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Abstract—In this paper, we present a Markov Random Field
(MRF) approach to estimating and sampling the probability
distribution in populations of solutions. The approach is used to
define a class of algorithms under the general heading Distribu-
tion Estimation Using Markov Random Fields (DEUM). DEUM
is a subclass of Estimation of Distribution Algorithms (EDAs)
where interaction between solution variables is represented as
an undirected graph and the joint probability of a solution is
factorised as a Gibbs distribution derived from the structure of
the graph. The focus of this paper will be on describing the three
main characteristics of DEUM framework, which distinguishes
it from the traditional EDA. They are: 1) use of MRF models,
2) fitness modelling approach to estimating the parameter of the
model and 3) Monte Carlo approach to sampling from the model.

Index Terms—Estimation of Distribution Algorithms, Evolu-
tionary algorithms, Fitness aodelling, Markov Random Fields,
Gibbs distribution.

I. INTRODUCTION

In nature, improved organisms are evolved by means of nat-
ural selection and random variation. Evolutionary Algorithms
(EA) adopt this approach and simulate natural selection and
variation to evolve a better solution to a problem. Each of
the classical branches of EA, Genetic Algorithms (GA) [1],
Evolution Strategies (ES) [2] and Evolutionary Programming
(EP) [3], encapsulates selection and variation in some form.
Selection and variation have well-understood roles in EA.
Selection puts pressure on the evolution of high quality solu-
tions by selecting fitter solutions from a population. Variation
produces a set of successor solutions based on the selected
solutions, exploiting knowledge gained so far while continuing
to explore novel solutions.

In a GA, variation is achieved using two genetic operators,
crossover and mutation. Crossover forms the new population
by exchanging some parts between the selected solutions.
Mutation slightly modifies some parts of the newly-formed
solutions to introduce some genetic variation in the new pop-
ulation. In recent years, a probabilistic approach to variation
has been proposed which replaces crossover and mutation with
distribution estimation and sampling. Distribution estimation
derives a probability distribution from a population of solu-
tions. Sampling generates a new population with statistical
properties determined by the distribution. Algorithms using
this approach to variation are called Estimation of Distribution
Algorithms (EDAs) [4], [S]. EDAs have been recognised as
a powerful technique for optimisation, comparing well with
classical GAs on a range of benchmark problems [6], [7], [8].

Much research in EDAs focuses on different approaches
to distribution estimation and sampling and their relative ef-
fectiveness. In particular, directed graphical models (Bayesian

networks) have been widely studied and are well-established
as a useful approach in EDAs. In this paper, we introduce a
framework of an EDA based on undirected graphical models
(Markov Random Fields) called Distribution Estimation Using
Markov Random Fields (DEUM) !. One of the distinct char-
acteristics of this framework is that, it builds a model of the
fitness function as opposed to a model of good solutions. This
characteristics also distinguishes it from a recently proposed
MRF based EDA called Markov Network EDA (MN-EDA)
[11] that builds model based on Kikuchi approximation [12].
The focus of this paper will be on describing how the three
distinct components of an EDA, 1) estimating the model, 2)
estimating the parameters and 3) sampling from the model, are
incorporated within the DEUM framework and how they inter-
act together to perform optimisation within different instances
of this framework.

The paper is structured as follows. Section 2 describes
the general framework of DEUM algorithms. Section 3 de-
scribes Markov Random Fields (MRF), a class of Probabilistic
Graphical Model (PGM) that DEUM uses as its model of
distribution. It also explains the general motivation behind
using PGM in EDAs and distinguishes Bayesian Networks
with MRFs. Section 4 describes the parameter estimation
technique used in DEUM. In particular, it describes how to
build a model of fitness function and used it to estimate the
MRF parameters. Section 5 presents the sampling technique
used in DEUM. Section 6 describes two instances of DEUM,
a univariate DEUM that directly samples from the Gibbs
distribution and a bivariate DEUM that uses a Monte Carlo
sampling technique to sample from the model. Finally, section
7 presents the summary of the work and concludes the paper.

Estimation of Distribution Algorithm

1) Generate initial (parent) population P

2) Select a set of solutions D from P

3) Estimate the probability distribution of solutions, p(z),
from D

4) Sample p(x) to generate offspring, and replace parent

5) Go to step 2 until termination criteria are meet

Fig. 1. The workflow of the general Estimation of Distribution Algorithm

'DEUM has been initially used to denote a MRF based univariate EDA
that maintained a probability vector for sampling [9]. This algorithm, being
an instance of general DEUM framework, has been later named as DEUM,,,,
[10]
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II. DEUM: A GENERAL FRAMEWORK

An EDA regards a solution, z = {1, 22, .., 2y}, as a set of
values taken by a set of variables, X = {X1, X5, ..., X,,}. As
shown in Figure 1, all EDAs begin by initialising a population
of solutions, P. A set of promising solutions D is then selected
from P, and is used to estimate a probabilistic model of X,
p(X = z) or simply p(x). p(x) is then sampled to generate
the next population.

The general framework of DEUM is very similar to that of
any EDAs, which is shown in (Figure 2).

Distribution Estimation using MRF (DEUM)

1) Generate parent population P
2) Select a set of solutions D from P
3) Estimate an MRF from D, i.e, estimate the probability
distribution p(z) from D assuming undirected depen-
dency between variables in z. This involves:
a) Estimating structure of the MRF
b) Estimating Parameter of the MRF using fitness
modelling approach

4) Sample MRF to generate new solutions
5) Go to step 2 until termination criteria are meet

Fig. 2. The pseudo-code of the Distribution Estimation Using MRF (DEUM)
algorithm

There are, however, several noticeable characteristics spe-
cific to DEUM. They are

1) It uses MRF as its probabilistic models

2) It builds a model of fitness function and uses it to
estimate the parameters of the MRF

3) It then samples from the MRF. The process of sampling
from MREF is different than that of other typical EDAs

Next three sections describe each of these topics in more
detail.

III. MARKOV RANDOM FIELDS AND DEUM

In order to motivate the use of MRF in DEUM, it is
important to understand the notion of Probabilistic Graphical
Models (PGM) in EDAs. In this section we first describe
the PGM in context of EDAs and then distinguish Bayesian
Networks with the MRF. We then describe several properties
of MRF that are exploited by the DEUM framework.

A. Probabilistic Graphical Models

The performance of an EDA heavily depends on how
successfully it estimates the joint probability distribution
p(z) = p(z1, 2, ..., Tp). In general, the computation of p(x)
for a bit string variable encoding, x; € {0, 1}, involves the
computation of probabilities for all 2" configurations of x.
This is not computationally feasible in most problems of
interest. However, in many cases, a good approximation to
p(z) can be obtained by factorising the distribution in terms
of the marginal probabilities of combinations of variables X,

thus reducing the costs of distribution estimation and sampling.
The simplest factorisation of p(x) is in terms of the marginal
probabilities of individual variables (1).

o) = [[tea) (1)

This model assumes that each X; € X is independent and
does not interact with other variables in X . As interaction
between solution variables is introduced, the terms in the
factorisation of p(z) become complex, involving conditional
probabilities between two or more variables 2. This is where
PGM comes into effect.

PGM provides an efficient and effective tool to represent
the factorisation of the joint probability distribution (jpd),
p(z), and therefore have an important role in EDAs. They
can be seen as a merger of two disciplines, probability theory
and graph theory [14]. They are mainly categorised into two
groups.

1) Directed models (Bayesian networks)

2) Undirected models (Markov Random Fields/Markov net-

works)

Let us give the formulation of jpd for each of them.

B. Bayesian networks

A Bayesian network can be regarded as a pair (B, ©), where
B is the structure of the model and the © is a set of parameters
of the model. The structure B is a Directed Acyclic Graph
(DAG) 3, where each node corresponds to a variable in the
modelled data set and each edge corresponds to a conditional
dependency. A set of nodes II; is said to be the parent of X;
if there are edges from each variable in II; pointing to X;.

plx =0) plx=1

plx; =0). plx; =1

plxs=0]x=0x=0) plx; =0]|x =1x=0)

p(x;=0]x =0,x,=1), p(x, =0]x, =1, =1),
plxs=11x=0,%=0) p(x;=1]x =1x,=0),
@ plxs=11x=0,x =1, plx; =1]x =1Lx,=1)

P(x,=0]|x,=0), p(x,=0]|x,=1),
Plxy=11%=0) plxy=1lx=1)

plxs=0]x;=0) plx;=0]x=1)
p(x;=1]x,=0), p(x; =1]x,=1)

a. Structure b. Parameter

Fig. 3. A Bayesian network on 5 binary random variables

The parameter © = {p(z1|I11), p(z2|Il2), ..., p(z,|I1,)}
of the model is the set of conditional probabilities, where

2Depending on the level of complexity, factorisations are categorised into
three groups: univariate, bivariate and multivariate factorisation. An excellent
review of this can be found in [5], [13]

3A DAG is a graph where each edge joining two nodes is a directed edge,
and also there is no cycle in the graph i.e. it is not possible to start from a
node and travelling towards the correct direction return back to the starting
node
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each p(z;|II;) is the set of probabilities associated with a
variable X; = z; given the different configuration of it’s parent
variables II;.

Figure 3 shows the structure and the parameters of a
Bayesian network, where each variable X, is binary. i.e.
x; € {0, 1}. For this structure the joint probability distribution
can be factorised as:

p(a1, T2, 23, T4, T5) =

p(x1)p(x2)p(as|zi, v2)p(za|xs)p(as|zs) 2

In general, given a set of variables X = {X;,X5,..,X,,} a
joint probability distribution for any Bayesian network is

n

p(@) = [ [ ple:TL) 3)

i=1

C. Markov Random Fields

A Markov Random Field is a pair (G, V), where G is the
structure and the W is the parameter set of the network. G is
an undirected graph where each node corresponds to a random
variable in the modelled data set and each edge corresponds to
conditional dependencies between variables. However, unlike
Bayesian networks, the edges in Markov Random Fields are
undirected. Here, the relationship between two nodes should
be seen as a neighbourhood relationship, rather than a par-
enthood relationship. We use N = {Ny, Na, ..., N, } to define
a neighbourhood system on G, where each N; is the set of
nodes neighbouring to a node X; *. The parameter set ¥ is a
set of potential functions in terms of cligues in the structure
(. These will be described next.

“— Aclique

: Uy (X),%,,x5)
Uy (%,,%5,%,)
u5(x,,X5)

2y (%55%5)

@/ \ \

a. Structure b. Parameter

Fig. 4. A Markov Random Field on 6 random variables

A MRF is characterised by its local Markov property known
as Markovianity [15], [16] which states that a node X; can be
completely defined by knowing only its neighbouring nodes
N;. N; is sometimes referred to as Markov Blanket for X,
[17]. In terms of probability it can be written as

p(xilz —{xi}) = p(z:| N;) 4

4In literatures, MRF is also defined in terms of sites and neighbourhood
system [15], [16], where a site corresponds to a node X;

Local Markov property, however, does not provide the
formulation for the joint probability distribution p(z). Fortu-
nately, Hammersley and Clifford [18] have provided a theorem
that formulates the joint probability distribution for an MRF
in terms of the Gibbs distribution. Let us explain this in detail.

Definition 3.1 (Clique): Given an undirected graph G, a
clique is a fully connected subset of the nodes.

Definition 3.2 (Sub Clique): Given an undirected graph G,
a sub clique of a clique is a fully connected subset of nodes
within that clique.

Definition 3.3 (Maximal Clique): A clique is called maxi-
mal, if it is not a sub clique of any other clique.

Definition 3.4 (Singleton Clique): A clique is called single-
ton if it consist of a single node from G.

Gibbs distribution: A Gibbs distribution over a set of
random variables X has the following form

e~ U@)/T
p(a) = ——— (5)
where,
7 - Z e~ UW)/T (6)
yeN

is a normalising constant, € is the set of all possible solutions,
T is a parameter of the distribution known as the temperature
and U(z) (or more precisely U(X = z)) is known as the
energy of the distribution.

Given an undirected graph, G, on X, energy, U(x), is
defined as a sum of potential functions over the cliques, Cj,
in G.

Uz) =Y uilci) (7
i=1

Here, u;(c;) (or more precisely u;(C; = ¢;)) is a potential
function defined over a clique C; which reflects the neigh-
bourhood relationship between nodes in C;. Equation (5), in
terms of clique potential function, can also be written as

3" wi(e:)/T

pl) = ——— 8)

We use C = {C;,Cy,..,C,,} to denote the set of all
considered clique in U(x). The set C can consist of all
possible cliques in G, i.e., all maximal cliques, their sub
cliques including singleton cliques. However, it is always
possible to consider only the maximal cliques in C' and define
the energy U (x). For example, the structure shown in Figure
4 has four maximal cliques

Cr = {X1,X9, X3}, Oy ={X5, X3, X4}

Cy = {X5, X5}, Cy ={X3,Xs}

The formulation of Gibbs distribution for this structure can

be written as .
e > uiled)/T 9
7z ©

Temperature, 7', has a very important role in Gibbs distri-
bution. It controls the sharpness of the jpd. i.e. when the
temperature is high, all configurations of X tends to be equally
distributed. Conversely, near the zero temperature, the jpd
concentrates around the global energy minima.

p(x) =
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MRF-Gibbs equivalence: A jpd on set of random variables,
X, obeys following three conditions:
1) p(x)— > (0,1), Probability of each z lies between 0

and 1

2) p(x) >0, Positivity condition

3) >, =1 Sum over probability of all possible
ris 1

In addition, if X is an MREF, it also follows the local Markov
property (4).

We can also define a Gibbs Random Field over X, which
is characterised by its global property: the Gibbs distribution.

Definition 3.5 (Gibbs Random field): A set of random vari-
ables X with neighbourhood system NN is said to be Gibbs
Random Field (GRF), if and only if they obey a Gibbs
distribution.

The Hammersley-Clifford theorem [18] then establishes the
equivalence between the local Markov property of MRF and
global Gibbs property of GRF.

Theorem 3.1 (The Hammersley-Clifford theorem): Any set
of random variables X with a neighbourhood system N is
an MRF if and only if X is also a GRF.

Proof: can be found in [15]. [ |

In another words, Hammersley-Clifford theorem states that
a jpd for any MRF can be equivalently specified as a Gibbs
distribution (5). The practical value of the theorem is that,
the behaviour of a system using Gibbs distribution completely
depends on the chosen form of the potential functions, u;(c;),
and the temperature, T'. These parameters can be varied in
order to achieve desired system behaviour. We exploit this
property of Gibbs distribution to estimate and sample the MRF
in DEUM framework.

IV. ESTIMATING THE MRFS: A FITNESS MODELLING
APPROACH

In previous section we have formulated the joint probability
of an MREF as a Gibbs distribution. In this section, we describe
the way in which DEUM estimates its parameters.

In a typical EDA, the process of estimating p(x) uses a
selection method to identify a set of good solutions in a
population. This set is then used to empirically determine
the distribution of the terms in the factorisation. For example
in UMDA, (1) is used as the model of distribution, where
marginal probabilities for each z; is calculated as follows,

(10)
ze€D,x;=1

A noticeable feature of this approach is that all selected
solutions are given equal weight in determining the proba-
bilistic model, even though they may vary greatly in fitness.
This raises the question as to whether the fitness of individual
solutions could be more accurately represented in the model
and whether this would be beneficial in terms of algorithm
performance.

We can relate fitness to probability more precisely by
considering the mass distribution of fitness over solution space.
This can be regarded as a probability distribution. We obtain a
factorisation of this distribution using Markov Random Field
(MRF) theory. Let us describe this in detail.

A. Using fitness to model the energy for the Gibbs distribution

Assuming that the probability of a solution is proportional
to its fitness, the jpd, p(z), can be modelled in terms of fitness

® @)

p(z) = — (11)

Where, Z = 3, o, f(y) is the partition function and 2 is the
set of all possible solutions.
For such p(x), we have

D p(z)— > 1[0,1], Probability of each x lies between
0 and 1
2) p(x) >0, Positivity condition: assumes f(x) > 0.

This can be maintained by mapping f(x).
3) > secqp(z) =1, Sum over probability of all solution
is 1
Now, from (5) and (11), we can deduce following equivalence
of jpd for MRF in terms of fitness function.

B e~ U)/T B f(z)
p(x) = S cqe VBT = > e W)

From which, following relationship between fitness and the
energy can be deduced [19].

~In(f(z)) = Ua)

For simplicity, here we assume 7' from (12) to be 1. In other
words, (13) defines the equivalence shown in (12). We refer
to (13) as MRF Fitness Model (MFM). From (7), MFM can
also be written in terms of potential functions as:

(12)

13)

—In(f(z)) = Z ui(ci) (14)

Energy, U(z), in MEM (13) gives the full specification of the
jpd (5), so MFM can be regarded as a probabilistic model of
the fitness function. Also notice that, minimising U (x) here is
equivalent to maximising f(z).

At this point, it is important to notice that the log-linear form
of MFM (14) is the result of our assumption of jpd as a mass
distribution of fitness over solution space, as shown in (11). We
could easily get different relationship between f(x) and U(z)

by making diferent assumption about mass distribution of
. . —f ()
fitness function. For example, assuming p(x) = ZQ T
Y
we would get a linear MFM as f(z) = >0 u;(c;).
In subsequent sections, we show how MFM (14) is used to

estimate the parameters for the MRF.

B. Defining energy in terms of potential functions

In general, the form of energy, U(x) in MFM, will model
the different order of interaction between variables in X.
The form of energy, however, will depend on our chosen
potential functions over the cliques in the structure G. Here
we define energy for a univariate and a bivariate structure. In
subsequent sections we will formulate EDAs based on these
two structures.
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Univariate structure

Univariate structure assumes each variables X; € X to be
independent. The graph G for such structure will be an edge
less graph. Therefore, the set of maximal cliques, C, in G
would consist of n singleton cliques C; = {X;}. For each
clique, {X;}, we associate a potential function as follows:

From (13) the MFM can then be written as:
—In(f(z)) =U(z) = caz1 + oy + ... + apzy,  (16)
In terms of jpd (5), it can also be written as
e Do 17
p(:r) = # ( )
where, .
Z2=3 e Xiom (18)

e

Here, a; are the parameters associated with each clique
{X.}. o; being the only unknown parameters of the potential
function (15), completely specifies the U(xz) and therefore
completely specifies the Gibbs distribution (17). Therefore,
they are also known as MRF parameters [16]. We use 0
to refer to vector of all MRF parameters in the model. For
univariate case, the vector § = o = {a, g, ..., v, }. In terms
of MFM, (13), an MRF parameter measures the effect that the
interaction between variables in a clique have on the fitness
of the solution, f(x). Obviously, in univariate case (16), «;
measures the effect of a single variable, X, on fitness.

Fig. 5. A structure showing the bivariate interaction between variables in a
two dimensional lattice

Bivariate structure: A bivariate structure represents the
pair-wise interaction between variables. Here we consider a
bivariate structure on two dimensional lattice with foroidal
neighbourhood. For example, in Figure 5, a bivariate structure
on a two dimensional lattice with n = 4 x 4 variables is
shown, where each variable X;; € X interacts with four of its
immediate neighbours. This structure can also be seen as an
instance of the Ising model on two dimensional lattice [20].
The set of maximal cliques, C, in this case, contains 2 X 42

bivariate cliques C;; i+ = {X;;, X;/j» }. This structure can be
generalised to the n = [ x [ variables, where C' will contain
m = 2% bivariate cliques. For each clique {X;;, X;;},
we assign a potential function [;; . x;jxy 7, where, each
Bij,irj is the MRF parameter associated with bivariate clique
{Xij, Xy }. The energy, U(x) in MFM (13) for such X will
therefore be

—In(f(x) = U(a) =

l l
YN Bz + BiaG+nTiaTigen)  (19)
i=1j=1

In terms of Gibbs distribution it can also be written as

l l
o D i ijl (Big, (415 %i5@ 41y +Bij i+ )T TiG+1) ) /T

p(z) = Z

(20)
We use [ to denote the set of all 2n bivariate MRF parameters
Bij,itj-

Depending upon the number and order of cliques consid-
ered, we may construct different MFMs from a single graph
G. Let us define two types of MFM.

Definition 4.1 (Minimal MFM): We define a Minimal
MFM as the MFM where the potential functions in U(x) are
defined on all the maximal cliques and not on any of their
sub-cliques.

Definition 4.2 (Complete MFM): We  define Complete
MFM as MFM where the potential functions in U(x) are
defined on all the maximal cliques, their sub-cliques including
singleton cliques.

Equation (19) is an example of a minimal MFM for the
structure shown in Figure 5. We can also build a complete
MFEM for this structure. For this, we assign a potential
function, «;;x;;, to each singleton clique {X;;} in addi-
tion to potential functions [;; /2% for order 2 cliques
{Xij;, Xisjr}. The energy for the resulting MFM can be written
as

~In(f(x) = Ula) =

l
DO (igmi + Bij )i TisTan); + BigaGin TigTig+1))

i=1 j=1

@2y
We use « to denote the set of all n univariate parameters o;;.
Set of all MRF parameters 6 will then contain both « and 3.

C. Estimating the parameters of MRF

Once we define the potential function for the given structure
of MRF and build a MFM, next step is to estimate the
parameters of the MRF, 6. In DEUM, we do so by fitting
the derived MFM to a dataset (i.e. set of solution), D.

Each solution in a given population provides an equation
satisfying the MFM, where MRF parameters will be the
unknown part. Applying this to a set D consisting of N
solutions therefore allow us to estimate § by solving the system
of equations:

F=A40"T +C (22)
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Here, F is the column vector containing — In(f(z)) of all

solutions in D, 6, is the vector of all MRF parameters SCA
is the matrix of values in D and C is a constant known as
intercept of the system of equation ©.

For example, for univariate structure, a solution, x, in the set
D will provide an equation satisfying (16). Where, left hand
side of the equation will be the —in(f(z)) and the right hand
side will be the sum over the product of each x; € z with
the MRF parameter «;. Here «; is the unknown part of the
equation. Note that, for mathematical reason, {-1,1} should be
used as the values for z; rather than {0,1}. This ensures the
arithmetical symmetry between possible values of x; and is
a standard practice in MRF modelling techniques. Applying
(16) to the whole set, D, therefore allows us to estimate MRF
parameters, o, by solving the system of equations:

F=A4a"+C (23)

Here, F' is the NN-dimensional column vector containing
—In(f(z)) for the set of solutions in D. A is the N X n
dimensional matrix of allele values in the set D, 8 = o =
(a1,0,...,ay,) is the vector of MRF parameters. Figure 6
shows an example of a set of solutions, D, and the corre-
sponding set of linear equations.

Selected solutions (D)

x ={x1, X2, X3 %4, x5} flx)

System of equations
F = 4aT +C

111 0/1/0] 3 -In(3) = oajtoz-astas-ast C
0/01/1]1]3 -In(3) = - a;- art @zt agtas+ C
111 0/1/0] 3 —_ -In(3) = artax-astag- a5+ C
1/000[1]2 -In(2) = a;-02- a3- agtas+tC
1100102 -In(2)= a;-a:- a5t ag- ast C
1100/0] 3 il = fjf;az-as- as- as+ C

1008 (1 1 -1 1 -1 1) /[«

-1098] |-1 -1 1 1 1 1| a

—1098) |1 1 -1 1 -11| a

0693 |1 -1 -1 -1 1 1|]|a

0693 |1 -1 -1 1 -1 1| a

—1098) (1 1 -1 -1 -11)\c

Fig. 6. A set of solutions D and the corresponding set of linear equations
including the constant C' for univariate MFM

Depending on the relationship between /N and n, the system
will be under-, over-, or precisely-specified. A standard least
square fitting algorithm can be used to give a estimation
of the «; (and the constant C'). We state one of the most
stable algorithm for this purpose known as Singular Value
Decomposition (SVD) [21]. SVD can give useful results even
when the system of linear equations is under-specified or over-
specified.

This approach can be similarly extended for bivariate (or
any multivariate) MFM. The size of the matrix A will depend

on the number of MRF parameters in 6 and the size of the
59T is the transpose of vector 6 to make it a column vector

6C can be seen as the parameter associated with an empty clique in structure
G

set D. For example, if we consider a complete MFM for the
bivariate structure (Equation 21), the size of the matrix will
be N x s, where s, the length of 6, is 3n as 6 will contain
both n parameters in « and 2n parameters in (3.

V. SAMPLING THE MRF

Once the estimation of an MRF is completed, next step is to
sample from the model. One of the way to sample from MRF
is by using its local Markov property (4), i.e. by estimating the
marginal probability, p(z;|N;), of each variable X; conditional
upon set of its neighbouring variables N;. p(x;|N;) can then be
used to sample further z;. Note that, for univariate model (16),
p(x;|N;) generalises to p(x;). In general, p(x;|N;) could be
directly estimated from the population by means of frequency
counting, as done in other Bayesian Networks based EDAs.
In DEUM, however, we estimate it from the jpd, (5).

A. Finding marginals from the Gibbs distribution

Let us use 27 to denote a solution x having a particular
z; = +1 and =~ to denote a soltuion x having x; = —1. The
probability that the value of the variable in position ¢ is equal
to 1 given its neighbours, p(x; = 1|N;), can then be written

as
p(a™)

P(e*) + p(@)

Substituting p(z) from (5) and cancelling the Z, we get

plx; = 1|N;) = (24)

e U@h)/T
p(xi = 1|N;) = e-U@N/T 1 U@ )/T @5)
or,
= 1) = ! 26
plzi=1) = 14 eWEH)=U(™))/T (26)

Since, U(z ") and U(x ™) agree in all terms other than those
containing x;, the common terms in both U(z") and U(x™)
drop out and we get the following expression as the estimate
of the marginal probability for x; = 1 conditional upon N;:

1
p(zi = 1N;) =

BRI @7

Similarly, we can get following expression as the estimate
of the marginal probability for x; = —1:

1
p(xi = —1|N;) =

T g2t (28)

Here, W; is the difference in two energies, U(z") and
U(xz™), after substituting the x; to 1 for all the remaining
terms in U(z™") and to —1 for all remaining terms in U(z™).
For example, W; for the univariate MFM (16) simplifies to

W=« (29)

and therefore the marginal probability of z; = 1 simplifies to
1

plzi=1) = 1 ¢ o2ai/T (30)

Similarly, W; (or more precisely W;;) for bivariate MEM (19)
simplifies to

Wij = Bij i+ )52+ + BijaG+1TiGi+1) T
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Bli—1)j,i5%(i-1)j + Bi(i—1),ijTi(j—1) @31

and therefore the marginal probability of x;; = 1 simplifies to
1

Bij (i+1)5 % G+1)i TFij,iG+1) TG+ +
2| Ba-1jiiTa-1iHBiG-1,i%iG-1 | /T
1+e

(32)

p(xi; = 1|Nij) =

B. Role of temperature in sampling a Gibbs distribution

As we said earlier, temperature, I', has a very important
role in Gibbs distribution. It controls the convergence of the
distribution. In equation (27), as 7' — 0, the value of p(z; =
1|NV;) tends to a limit depending on the W;. If W; > 0, then
p(z; = 1|N;) — 0 as T — 0. Conversely, if W, < 0, then
plz; = 1N;) — 1lasT — 0. If W; = 0, then p(z; =
1|N;) = 0.5 regardless of the value of T'. Therefore, the WW; are
indicators of whether the z; at the position ¢ should be 1 or —1.
This indication becomes stronger as the temperature is cooled
towards zero. In subsequent sections we present instances of
DEUM, that uses temperature to control the convergence of the
probability distribution, and therefore control the convergence
of the algorithm.

VI. INSTANCES OF DEUM

In this section we describe two instances of DEUM algo-
rithms. We also highlight some of the experimental results on
their performance. The aim here is to provide an overview
of some of the working example of DEUM. More complete
description of these and other DEUM algorithms together with
detail experimental results can be found in [9], [22], [23], [24],
[25], [10].

A. DEUM: A univariate DEUM with direct sampling from
Gibbs distribution

In this section, we describe a DEUM, which estimates
univariate model of probability distribution (17) and samples
from it. We call it a DEUM instance with direct sampling from
Gibbs distribution (DEUM,). DEUM, begins by initialising a
population of solution P. The N best solution is then selected
from P. MRF parameters, «, are then calculated by fitting the
univariate MFM, (16), on the selected set of solution. This is
achieved by solving the system of linear equations, (23). The
p(x; = 1) is then calculated from equation (27) and sampled
to generate the child population. The child then replaces the
parent, P, and this process continues until termination criteria
are satisfied.

The five-step workflow for DEUMy; is shown in Figure (7).

As described earlier, , i.e. inverse of 7', has a direct effect
on the convergence of Gibbs distribution and therefore on
the convergence of the DEUM,. As the number of iterations,
g, grows, the marginal probability, p(z;), gradually cools to
either O or 1. However, depending upon the type of problem,
different cooling rates may be required. In particular, there is
a trade-off between convergence speed of the algorithm and
the exploration of the search space. Therefore, the cooling rate
parameter, 7, has been introduced. 7 gives explicit control over

the convergence speed of DEUM,. Decreasing 7 slows the
cooling, resulting in better exploration of the search space.
However, it also slows the convergence of the algorithm.
Increasing 7, on the other hand, makes the algorithm converge
faster. However, the exploration of the search space will be
reduced.

Distribution Estimation using MRF with direct sampling
(DEUM,)
1) Generate an initial population, P, of size M.
2) Select set D from P consisting of N fittest solutions,
where N < M.
3) Calculate the MRF parameters o = (o, o, . . .
fitting univariate MFM to D.
4) Generate M new solutions using the following distribu-

tion:
o~ S0 /T
pla) = = ——

, ) by

where, p(z; = 1) = H—% and p(z; = —-1) =
H_@%m Here, k, the inverse of temperature 7, is
defined as k = g7 where, g is the number of the current
iteration and 7 > 0 is a cooling rate parameter chosen
by the user.

5) Replace P by the new population, and go to Step 2 until

the termination criterion is satisfied.

Fig. 7. The pseudo-code of the Distribution Estimation Using MRF with
direct sampling (DEUMy) algorithm

B. Is-DEUM,: A bivariate DEUM with a Monte Carlo ap-
proach to sampling

Since there are no dependency between variables in uni-
variate case, marginal probability for each variable, p(z;|N;)
simplifies to the univariate marginal probability, p(z;), compu-
tation of which only involves the value for the variable itself.
However, in bivariate (or multivariate) case, it is essential to
know the value of N;, which is then used to estimate W;
in (31). Since, we are trying to optimise both X, and its
neighbours N, at the same time, and the value for one effects
the value for another, it is difficult to decide on the value
of N; to be used for estimating p(z;|N;). This, therefore,
does not allow us to directly estimate and sample the marginal
probabilities as done in DEUMy.

In order to extend DEUM to bivariate (and multivariate)
case, we need to resolve this situation, for which we propose
to use an iterative sampling technique, known as Monte Carlo
samplers [26]. Specifically, we are interested in Gibbs sampler
(GS) [27]: a well known instance of the Monte Carlo sampler.

In this section we describe a version of DEUM that use
previously defined bivariate model, (20), as its model of
distribution and the Gibbs sampler as sampling technique.
Since, the structure for (20) can be seen as a variant of Ising
model, the name Is-DEUM, has been used. The symbol g
stands Gibbs sampler.
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Gibbs Sampler (GS)
1) Generate a solution z° = {9, 29, ..,2%}
2) Set the initial value for 7.
3) Repeat:
a) Select a variable xf from z° and set x{ = 1 with
probability p(z¢ = 1|N?)
b) Decrease T’
:Until termination criteria is satisfied
4) Terminate with answer x°.

Fig. 8. The pseudo-code for a Gibbs Sampler

Figure 8 shows the workflow of a Gibbs sampler.

The general idea of a Gibbs sampler is to repeatedly sample
variables in z° until a termination criteria is satisfied, such
that a (locally) optimal z° is produced. Different termination
criteria could be could be used for this purpose, for example,
to terminate after a fixed number of iteration is performed, or
to terminate if no further improvement in energy U (z°) could
be found. The temperature coefficient, 7', in Gibbs sampler
can be used to control the convergence of p(z?|N?). In each
iteration, 7' is decreased. This gradually converges p(z?|N?)
to its limit. This iterative process would produce a z° that,
depending upon the allowed iteration, would be closer to a
optima pointed by current set of MRF parameters 6.

Figure 9 shows the workflow of Is-DEUM,, which incor-
porates Gibbs sampler as its sampling method.

Is-DEUM with Gibbs Sampler (Is-DEUM,)

1) Generate a population, P, of size M

2) Select the set D consisting of NNV fittest solutions from
P, where N < M.

3) Calculate the MRF parameters 6 by fitting (20) to D.

4) Run Gibbs sampler M times to generate new population.

5) If termination criteria is not satisfied, replace parent with
new population and go to step 2

Fig. 9. The pseudo-code of the DEUM with Gibbs Sampler

As we said earlier, the convergence of GS depends on
two factors: a) how fast we decrease the temperature 7' and
b) how many iteration we allow in the GS. This, therefore,
also effects the performance of the Is-DEUM,. Decreasing
T quickly may result in premature convergence of x°. Con-
versely, decreasing 7' slowly may result in high computation
cost. Similarly, allowing GS to iterate for large number of
runs would converge z° to some local optima pointed by the
current set of MRF parameters 6. This, therefore, would result
in increasing number of similar solutions being present in the
new population that are converged to some local optima. If the
current optima pointed by 6 is not the global optima for the
problem, the result would be a quick loss of diversity in the

population, even straight after the initial generation. Therefore,
setting the correct rate of change for temperature and setting
the allowed number of iteration is crucial in the performance
Is-DEUM,,.

C. Results

Number of experimental analysis with wide range of dif-
ferent optimisation problems has been done to test the perfor-
mance of these (and other) DEUM instances. Detail descrip-
tion of them, as stated in previous section, can be found in
the publications elseware [9], [22], [23], [24], [25], [10]. In
this section we quickly go through some of these interesting
results.

Univariate problem

Since DEUMy; is a univariate EDA, obvious problem to test
it is with the univariate problem. The experimental results with
the OneMax problem, a typical univariate problem, showed
that the performance of DEUMy is significantly better than that
of Univariate Marginal Distibution Algorithm (UMDA) [4],
a univariate EDA, and a Simple GA with uniform crossover
(Figure 10). More specifically, it showed that, by setting the
very low initial temperature, close to zero, (i.e. vary high
value for 7), the DEUM, was able to find the solution in
a first generation requiring only about 1.5n fitness evaluation.
The explanation to this result is that the low temperature
tends to converge the distribution to an extreme, in the
very first generation. The value of p(x;) taking one of the
extrema of either 0 or 1 then depends only on the value of
estimated MRF parameters «;, as can be seen from (30). For
OneMax problem, fitness modelling approach to estimating
MREF parameters gives a very accurate estimation of « in the
initial generation, and therefore the first solution sampled from
the converged marginal probability is optimal. The number of
fitness evaluation, 1.5n, is therefore the size of the population.
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3500

3000

2500

2000

1500

Number of fitness evaluations

1000

500

Problem Size

Fig. 10.  Scalability of DEUM, for onemax problem
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Deceptive problem

Univariate EDAs do not scale well with deceptive problem.
This is mainly because local improvement in fitness, while
solving such problems, misleads the algorithm away from the
global optima. This together with the fact that the univari-
ate EDA do not take into account any interaction between
variables makes them a poor performer in deceptive prob-
lems. Interestingly, experimental results on the performance
of DEUMy for a 60 bit Trap function of order 5 [28], a
difficult variant of deceptive problem, showed that by slowing
the cooling schedule, DEUM, was consistently able to find the
solution for this problem. In contrast, other univariate EDAs,
such as Population Based Incremental Learning (PBIL) [29]
and Univariate Marginal Distribution Algorithm (UMDA) [4],
was not able to solve this problem, even with a very high
population size and with extremely large number of fitness
evaluation. Figure 11 plots the Run Length Distribution (RLD)
curve [30] for DEUMy, and a GA 7, on 60 bit trap function.
RLD shows the cumulative percentage of successful runs that
terminated within certain number of fitness evaluation.

100 T T T T T

90 |-

cumulative percentage of successful runs

10 e BT R ERRTE TR PR

L L L
400000 600000 800000
number of fitness evaluations

L
Q 200000 1e+006 1.2e+006

Fig. 11. Performance of DEUM, on 60 bit Trap function of order 5

Ising problem

Ising spin glass problem has been introduced in early 1920s
to model the spin glass system. They have range of practical
applications in both statistical physics and Al Due to their
interesting properties, such as symmetry and a large number
of plateaus, they have also been widely studied by the GA
(and EDA) community [6], [28], [31], [11]. The experimental
results on the performance of Is-DEUM, for this problem
showed that, in terms of number of fitness evaluations needed
to find the solution, it significantly outperformed other EDAs
previously applied to this problem. In particular, it has been
found that the MRF parameters 6 estimated from the initial
population contained enough information to correctly predict
the global optimum, i.e., by slowly decreasing the temperature

7As expected, a GA with onepoint crossover was also able to find the
solution

and by allowing the high number of iteration in the GS, the
optimum solution was found within first few z° sampling for
the new population. This highly reduced the number of fitness
evaluation required by Is-DEUM,.

VII. CONCLUSION

In this paper we presented DEUM as a general framework of
an EDA based on MRF. We described three main component
of DEUM, 1) MRF models, 2) Fitness modelling for parameter
estimation and 3) Sampling from MRF, and showed how these
components interact together to perform optimisation in the
two different instances of DEUM. We also briefly described
some of the interesting results on the performance of these
algorithms.

There are two main explanations for the success of DEUM
algorithms. Firstly, DEUM builds a model of fitness function
to approximate the MRF. This contrasts with other EDAs
that build a model of selected solutions, where each selected
solution has equal contribution to the probability distribution.
Fitness modelling allows DEUM to use fitness in variation part
of the evolution by regulating the contribution of a solution
to the estimation of probability distribution. Secondly, DEUM
exploits the temperature coefficient in the Gibbs distribution
to regulate the behaviour of the algorithm. In particular, with
higher temperature, the distribution is closer to being uniform,
and with lower temperature, it concentrates near some optima.
This gives DEUM an explicit control over the convergence of
the algorithm. These two factors, put together, makes DEUM
a promising framework for optimisation of the real world
problems.
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