
DEUM: A framework for an Estimation of

Distribution Algorithm based on Markov Random

Fields

Siddhartha K. Shakya

School of Computing

The Robert Gordon University

Aberdeen, UK

A thesis submitted in partial fulfilment of the

requirements of

The Robert Gordon University

for the degree of Doctor of Philosophy

April 2006



ii



Abstract

Estimation of Distribution Algorithms (EDAs) belong to the class of population based

optimisation algorithms. They are motivated by the idea of discovering and exploiting

the interaction between variables in the solution. They estimate a probability distribution

from population of solutions, and sample it to generate the next population. Many EDAs

use probabilistic graphical modelling techniques for this purpose. In particular, directed

graphical models (Bayesian networks) have been widely used in EDA.

This thesis proposes an undirected graphical model (Markov Random Field (MRF)) ap-

proach to estimate and sample the distribution in EDAs. The interaction between variables

in the solution is modelled as an undirected graph and the joint probability of a solution

is factorised as a Gibbs distribution. The thesis describes a model of fitness function that

approximates the energy in the Gibbs distribution, and shows how this model can be fitted

to a population of solutions to estimate the parameters of the MRF. The estimated MRF

is then sampled to generate the next population. This approach is applied to estimation

of distribution in a general framework of an EDA, called Distribution Estimation using

Markov Random Fields (DEUM). The thesis then proposes several variants of DEUM us-

ing different sampling techniques and tests their performance on a range of optimisation

problems. The results show that, for most of the tested problems, the DEUM algorithms

significantly outperform other EDAs, both in terms of number of fitness evaluations and

the quality of the solutions found by them. There are two main explanations for the success

of DEUM algorithms. Firstly, DEUM builds a model of fitness function to approximate

the MRF. This contrasts with other EDAs, which build a model of selected solutions. This

allows DEUM to use fitness in variation part of the evolution. Secondly, DEUM exploits

the temperature coefficient in the Gibbs distribution to regulate the behaviour of the algo-

rithm. In particular, with higher temperature, the distribution is closer to being uniform

and with lower temperature it concentrates near some global optima. This gives DEUM

an explicit control over the convergence of the algorithm, resulting in better optimisation.

iii



To my parents

iv



Acknowledgements

I would like to take this opportunity and thank everyone who shared their moments with

me in various walk of life.

First and foremost, I would like to thank my family: my parents Buddha Kumar Shakya

and Chameli Shakya for being an unlimited source of inspiration, encouragement and

support for me, my brother Bijaya (Tinku) and his wife Rakhee for being my best friends,

and also Denisa Benkova, who is an integrated part of my family, for standing by me and

supporting me along the way.

I would like to express my deepest gratitude and thanks to my supervisor, John McCall,

for being such a great source of information and motivation. It is his invaluable advices

and support that guided me to successfully complete this thesis. I am also grateful to my

second supervisor, Deryck Brown, for all the interesting discussions and thoughts that he

gave me along the way.

I would also like to thank all the staffs in the school of computing for making the past

three and half years an enjoyable and memorable time. In particular, I would like to

thank Sudha B. Reddy, Muhammed Basharu, Kefeng Zhang, Zea Syed, Daniel Fredouille,

Ralf Bierig, Ratiba Kabli, Stella Asiimwe, Rahman Mukras, Selpi, Fiona Walsh, Nirmalie

Wiratunga, Miki Sun, Sutanu Chakraborti, Ganesan Bathumalai, Sandy Brownlee and

Stewart Massie from computing technologies centre for being such a great friends. I would

also like to thank Susan Craw, Andrei Petrovski, Roger McDermott, Ines Arana, Garry

Brindley, Chris Bryant and other academic staffs for their helpful advices and support.

Finally, I would like to thank Kathy Deen-Smith, Marie Duncan, Ann Gardner and Dianne

Godsman from the school office for their ever-smiling assistance, and Caroline Campbell,

Colin Beagrie and all the technical support team for their prompt support.

I am grateful to Jose Antonio Lozano and Pedro Larrañaga for inviting me and giving me

opportunity to work with them in the Intelligent System Group at the University of the

Basque Country. I met a lot of good friends there: Rubén Armañanzas, Roberto Santana,

v



Borja Calvo, Aritz Pérez, Ramón Sagarna and Guzmán Santafé. I am particularly thankful

to Roberto Santana for his valuable comments and very interesting discussions.

I would also like to thank my viva committee, Jose Antonio Lozano, Frank Herrmann,

Maureen Melvin, and John McCall for agreeing to serve as the committee members and

providing me with valuable comments and suggestions. Specially, I would like to thank

Jose and Frank for their very useful thoughts, and interesting suggestions.

There are number of other peoples who supported me throughout the course of my re-

search. Particularly, I would like to thank Susan Copeland, and also my cousin Minu and

her husband Surendra Shrestha for their constant support.

Finally, I am grateful to the Robert Gordon University for providing the grant that allowed

me to carry this research work.

vi



Publications

Some parts of the work presented in this thesis has appared in following publications.

Shakya, S.K., McCall, J.A.W. & Brown, D.F. (2006). Solving the ising spin glass problem

using a bivariate eda based on markov random fields. In proceedings of IEEE Congress

on Evolutionary Computation (IEEE CEC 2006), IEEE press, Vancouver, Canada (in

press).

Shakya, S.K., McCall, J.A.W. & Brown, D.F. (2005c). Incorporating a metropolis method

in a distribution estimation using markov random field algorithm. In proceedings of

IEEE Congress on Evolutionary Computation (IEEE CEC 2005), vol. 3, 2576–2583,

IEEE press, Edinburgh, UK.

Shakya, S., McCall, J. & Brown, D. (2005b). Using a Markov Network Model in a

Univariate EDA: An Emperical Cost-Benefit Analysis. In proceedings of Genetic and

Evolutionary Computation COnference (GECCO2005), 727–734, ACM, Washington,

D.C., USA.

Shakya, S., McCall, J. & Brown, D. (2005a). Estimating the distribution in an EDA. In

B. Ribeiro, R.F. Albrechet, A. Dobnikar, D.W. Pearson & N.C. Steele, eds., In proceed-

ings of the International Conference on Adaptive and Natural computiNG Algorithms

(ICANNGA 2005), 202–205, Springer-Verlag, Wien, Coimbra, Portugal.

Shakya, S.K., McCall, J.A.W. & Brown, D.F. (2004b). Updating the probability vector

using MRF technique for a Univariate EDA. In E. Onaindia & S. Staab, eds., Proceed-

ings of the Second Starting AI Researchers’ Symposium, volume 109 of Frontiers in

artificial Intelligence and Applications, 15–25, IOS press, Valencia, Spain.

Shakya, S.K., McCall, J.A.W. & Brown, D.F. (2004a). Preliminary results on Evolution

without Selection. In Proceedings of Postgraduate Research Conference in Electron-

ics, Photonics, Communications and Networks, and Computing Science (PREP 2004),

Hertfordshire, UK.

vii



Contents

Abstract iii

Acknowledgements v

Publications vii

Contents viii

List of Figures xii

List of Tables xv

List of Abbreviations xvi

1 Introduction 1

1.1 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Estimation of Distribution Algorithms 6

2.1 From Genetic Algorithms to the Estimation of Distribution Algorithms . . 7

2.1.1 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1.1 Selection and Variation in GA . . . . . . . . . . . . . . . . 11

2.1.1.2 Linkage and the GA variation . . . . . . . . . . . . . . . . 12

2.1.2 Estimation of distribution and sampling: An alternative approach
to variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2.2 An example of variation by estimation and sampling of a
probability distribution . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Estimation of Distribution Algorithm . . . . . . . . . . . . . . . . . 18

2.1.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3.2 EDA workflow . . . . . . . . . . . . . . . . . . . . . . . . . 19

viii



2.2 Survey of discrete EDAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Univariate EDAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Bivariate EDAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 Multivariate EDAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Probabilistic Graphical Models and EDAs 33

3.1 Probabilistic Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Bayesian networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Learning the Structure of a Bayesian network . . . . . . . . . . . . . 37

3.2.1.1 Detecting conditional independencies . . . . . . . . . . . . 37

3.2.1.2 Score+Search methods . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Parameter Learning and Sampling a Bayesian network . . . . . . . . 39

3.3 Markov Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Learning the Structure of a Markov Random Field . . . . . . . . . . 42

3.3.1.1 Statistical independence test . . . . . . . . . . . . . . . . . 43

3.3.1.2 Linkage Detection Algorithm . . . . . . . . . . . . . . . . . 44

3.3.2 Parameter Learning and Sampling a Markov Random Field . . . . . 45

3.3.2.1 Junction tree approach . . . . . . . . . . . . . . . . . . . . 47

3.3.2.2 Junction graph approach . . . . . . . . . . . . . . . . . . . 49

3.3.2.3 Kikuchi approximation approach . . . . . . . . . . . . . . . 50

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Fitness modelling approach to estimating parameters in Markov Ran-
dom Fields 56

4.1 Factorising MRF as a Gibbs distribution . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Gibbs distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.2 MRF-Gibbs equivalence . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Using fitness to model the energy for the Gibbs distribution . . . . . . . . . 59

4.3 Defining energy in terms of potential functions . . . . . . . . . . . . . . . . 61

4.3.1 Univariate structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 Bivariate structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.3 Multivariate structure . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Estimating the parameters of MRF . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

ix



5 DEUM algorithm and a probability vector approach to sampling 69

5.1 DEUM: A general framework . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Using probability vector for maintaining and sampling the distribution . . . 71

5.3 DEUMpv: A DEUM with probability vector approach to sampling . . . . . 73

5.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.2 Test problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 DEUMd: direct sampling from Gibbs distribution 84

6.1 Finding marginals from the Gibbs distribution . . . . . . . . . . . . . . . . 85

6.1.1 Role of temperature in sampling a Gibbs distribution . . . . . . . . 86

6.2 Workflow of DEUMd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.2 Test problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4 Analysis of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.5 Comparing DEUMd with DEUMpv . . . . . . . . . . . . . . . . . . . . . . . 101

6.6 Cost benefit analysis of using fitness modelling approach to estimating MRF
parameters in EDAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.7 DEUM algorithms can work even without using an explicit selection operator104

6.7.1 Excluding selection operator from other EDAs . . . . . . . . . . . . 105

6.7.2 Excluding selection operator from DEUM . . . . . . . . . . . . . . . 106

6.7.3 So is there any need of explicit selection in DEUM ? . . . . . . . . . 108

6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 Is-DEUM: A step towards multivariate DEUM 110

7.1 The Ising spin glass problem and EDAs . . . . . . . . . . . . . . . . . . . . 111

7.2 MRF approach to modelling Ising spin glass problem . . . . . . . . . . . . . 113

7.3 Learning MRF parameters for Ising spin glass problem . . . . . . . . . . . . 115

7.4 Using a Metropolis method to sample MRF . . . . . . . . . . . . . . . . . . 116

7.4.1 Zero Temperature Metropolis method . . . . . . . . . . . . . . . . . 116

7.4.2 DEUM with the Metropolis method . . . . . . . . . . . . . . . . . . 117

7.4.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 118

x



7.5 Using a Gibbs sampler to sample MRF . . . . . . . . . . . . . . . . . . . . . 121

7.5.1 Gibbs sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.5.2 DEUM with Gibbs sampler . . . . . . . . . . . . . . . . . . . . . . . 124

7.5.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 125

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8 Future Work 133

8.1 Extension to current DEUM algorithms . . . . . . . . . . . . . . . . . . . . 133

8.1.1 Incorporate a structure learning Algorithm to DEUM . . . . . . . . 133

8.1.2 Multi-generation scheme in DEUM . . . . . . . . . . . . . . . . . . . 134

8.1.3 Region based decomposition of Energy in Gibbs Distribution . . . . 135

8.1.4 Selection in DEUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.1.5 Metropolis sampler with temperature . . . . . . . . . . . . . . . . . 136

8.1.6 Research on different ways to numerically define the clique potential
functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.1.7 Clique based mutation to minimise Energy in Gibbs distribution . . 137

8.2 Research on performance improvement . . . . . . . . . . . . . . . . . . . . . 138

8.2.1 Research in more efficient way to estimate MRF parameters . . . . . 138

8.2.2 Different cooling schedules . . . . . . . . . . . . . . . . . . . . . . . . 139

8.2.3 Performance enhancement using different GA techniques . . . . . . . 139

8.3 Theoretical works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9 Conclusion 142

9.1 Important contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9.2 General conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Bibliography 145

xi



List of Figures

2.1 A 6 bit long chromosome and its fitness function . . . . . . . . . . . . . . . 8

2.2 The pseudo-code of the Simple Genetic algorithm . . . . . . . . . . . . . . . 8

2.3 One point crossover between two solutions resulting in two offspring . . . . 10

2.4 A single bit mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 A simulation of a simple GA iteration . . . . . . . . . . . . . . . . . . . . . 11

2.6 GA evolution in terms of selection and variation . . . . . . . . . . . . . . . 12

2.7 From crossover and mutation approach of variation to probabilistic ap-
proach of variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 A simulation of variation by means of estimation of distribution and sampling 17

2.9 The pseudo-code of the general Estimation of Distribution Algorithm . . . . 19

2.10 Graphical representation of linkage with no interaction between variables . 21

2.11 The pseudo-code of the Population Based Incremental Learning . . . . . . . 22

2.12 The pseudo-code of the Univariate Marginal Distribution Algorithm . . . . 22

2.13 The pseudo-code of the Compact Genetic Algorithm . . . . . . . . . . . . . 23

2.14 Graphical representation of linkage with pair-wise interaction between vari-
ables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.15 Graphical representation of linkage with multivariate interaction between
variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.16 The pseudo-code of BOA, EBNA, LFDA . . . . . . . . . . . . . . . . . . . . 29

3.1 A Bayesian network on 5 binary random variables . . . . . . . . . . . . . . 36

3.2 A Markov Random Field on 6 random variables . . . . . . . . . . . . . . . . 40

3.3 An undirected graph on 10 random variables, showing a clique, a maximal
clique and a maximum clique . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 A junction graph for the undirected graph shown in Figure 3.3 . . . . . . . 46

3.5 An undirected chordal graph and a junction tree associated with it . . . . . 47

4.1 An undirected graph showing a chain model of interaction between 4 variables 62

4.2 An undirected graphical network showing a multivariate model of depen-
dency between 5 variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xii



4.3 A set of solutions D and the corresponding set of linear equations including
the intercept C for univariate MFM . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Graphical illustration of the effect of adding a constant while solving a
system of linear equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 The pseudo-code of the Distribution Estimation Using MRF (DEUM) al-
gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 The pseudo-code of the DEUM with probability vector approach to sam-
pling (DEUMpv) algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Average number of fitness evaluations for 30 to 180 sized Onemax problem
where the population size was 40 -100 for GA (uniform), 50 - 170 for both
variant of UMDA and 1.5n for DEUMpv which is 40 - 270. λ for DEUMpv

was 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Fitness landscape for simplified version of Schaffer f6 function . . . . . . . . 78

5.5 Experimental results in the form of RLD showing, for each algorithm run-
ning on the 20-bit binary representation of Schaffer f6 function, the cumula-
tive percentage of successful runs that terminated within a certain number
of function evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 Experimental results in the form of RLD showing, for each algorithm run-
ning on the 20-bit gray code representation of Schaffer f6 function, the
cumulative percentage of successful runs that terminated within a certain
number of function evaluations . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.7 Experimental results in the form of RLD comparing DEUMpv and PBIL
for 20-bit binary representation Schaffer f6 function. For both algorithms
population size was 160, learning rate was 0.1 and selection size, N , was 1
for (a), 2 for (b) and 3 for (c). . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.8 The trap function of order 5, where global optimum is in 11111 and local
optimum is in 00000. Any block of bits with u < 5 deceives algorithm to
the local optimum as u increases. . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1 The pseudo-code of the Distribution Estimation Using MRF with direct
sampling (DEUMd) algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Experimental results in the form of RLD showing, for each algorithm run-
ning on the 180 bit Onemax problem, the cumulative percentage of success-
ful runs that terminated within a certain number of function evaluations . . 90

6.3 Experimental results in the form of RLD showing, for each algorithm run-
ning on the 180 bit Plateau problem, the cumulative percentage of successful
runs that terminated within a certain number of function evaluations . . . . 92

6.4 Experimental results in the form of RLD showing, for each algorithm run-
ning on the 100 bit CheckerBoard problem, the cumulative percentage of
successful runs that terminated within a certain number of function evalu-
ations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xiii



6.5 Experimental results in the form of RLD showing, for each algorithm run-
ning on the 20 bit binary code representation of Schaffer f6 function, the
cumulative percentage of successful runs that terminated within a certain
number of function evaluations . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.6 Experimental results in the form of RLD showing, for each algorithm run-
ning on the 60 bit Trap function of order 5, the cumulative percentage of
successful runs that terminated within a certain number of function evalu-
ations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.7 RLD for DEUMd in comparison to DEUMpv and other univariate EDAs,
showing, for each algorithm running on the 20-bit gray code representation
of Schaffer f6 function, the cumulative percentage of successful runs that
terminated within a certain number of function evaluations . . . . . . . . . 102

6.8 A typical run of PBIL without selection pressure on 16 bit Onemax prob-
lem showing maximum and average fitness of the population over 10000
generations. Population size is 30, learning rate is 0.1 . . . . . . . . . . . . 105

6.9 A typical run of UMDA without selection pressure on 16 bit Onemax prob-
lem showing maximum and average fitness of the population over 150 gen-
erations. Population size is 30 . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.10 A typical run of DEUMd without selection pressure on 16 bit Onemax
problem showing maximum and average fitness of the population over 100
generations. Population size is 30, cooling rate is 1 . . . . . . . . . . . . . . 107

7.1 A structure showing the interaction between spins for a two dimensional
Ising spin glass system with 4× 4 spins . . . . . . . . . . . . . . . . . . . . 112

7.2 The pseudo-code of the Bitwise Zero-Temperature Metropolis method . . . 116

7.3 The pseudo-code of the DEUM with Metropolis sampling method . . . . . . 117

7.4 The pseudo-code of the Bitwise Gibbs Sampler . . . . . . . . . . . . . . . . 124

7.5 The pseudo-code of the DEUM with Gibbs Sampler . . . . . . . . . . . . . 125

7.6 The pseudo-code of the Repeated Bitwise Gibbs Sampler algorithm . . . . . 128

xiv



List of Tables

6.1 Parameter setup for Onemax . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Parameter setup for Plateau . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 Parameter setup for Checkerboard . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 mean ± stdev of fitness and number of fitness evaluation for each algorithm
on Checkerboard problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5 Parameter setup for F6 function . . . . . . . . . . . . . . . . . . . . . . . . 94

6.6 Parameter setup for Equal products . . . . . . . . . . . . . . . . . . . . . . 95

6.7 mean ± stdev of fitness and number of fitness evaluation for each algorithm
on Equal products problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.8 Parameter setup for Colville . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.9 mean ± stdev of fitness and number of fitness evaluation for each algorithm
on Colville problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.10 Parameter setup for SixPeakes . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.11 mean ± stdev of fitness and number of fitness evaluation for each algorithm
on SixPeaks problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.12 Parameter setup for trap5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.13 Results of the t-test comparison of number of fitness evaluation on problems
with lower order dependency . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.14 Results of the t-test comparison of quality of fitness for Colville and Equal
products function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.1 Performance of Is-DEUMm with minimal MFM for 12 instances of Ising
spin glass problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Performance of Is-DEUMm with the complete MFM for 12 instances of the
Ising spin glass problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3 Performance of Is-DEUMg on all 12 instances of Ising problem . . . . . . . 126

7.4 Performance of Is-DEUM and RBGS for Ising spin glass problem of size
n = 100, n = 256, and n = 400. Each column is the average of all four
instances of that particular problem size . . . . . . . . . . . . . . . . . . . . 128

7.5 The effect of change in population size and selection size on the performance
of the Is-DEUMg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xv



List of Abbreviations

ADF: Additively Decomposable Functions

BEDA: Boltzmann Estimated Distribution Algorithm

BGS: Bitwise Gibbs Sampler

BMDA: Bivariate Marginal Distribution Algorithm

BOA: Bayesian Optimization Algorithm

BZTM: Bitwise Zero-Temperature Metropolis method

cGA: compact Genetic Algorithm

COMIT: Combining Optimizers with Mutual Information Trees

DAG: Directed Asyclic Graph

DEUM: Distribution Estimation Using Markov Random Field

DEUMd: DEUM with direct sampling of Gibbs distribution

DEUMpv: DEUM with probability vector approach to sampling

EBNA: Estimation of Bayesian Network Algorithm

EBNABIC : EBNA using Bayesian Information Criterion

EBNAK2+pen: EBNA using K2 algorithm with a penalising factor

EBNAPC : EBNA using PC algorithm

ECGA: Extended Compact Genetic Algorithm

EDA: Estimation of Distribution Algorithm

FDA: Factorised Distribution Algorithm

GEMGA: Gene Express Messy Genetic Algorithm

gpdf: generalised probability density function

GRF: Gibbs Random Field

xvi



GS: Gibbs Sampler

hBOA: hierarchical BOA

Is-DEUM: DEUM with Ising model

Is-DEUMg: Is-DEUM with Gibbs Sampler

Is-DEUMm: Is-DEUM with Metropolis Sampler

jgpdf: joint generalised probability density function

jpd: joint probability distribution

LDFA: Linkage Detection Factorization Algorithm

LFDA: Learning Factorised Distribution Algorithm

LLGA: Linkage Learning Genetic Algorithm

MCMC: Markov Chain Monte Carlo

MDL: Minimum Description Length

mGA: messy Genetic Algorithm

MIMIC: Mutual Information Maximization for Input Clustering

MN-EDA: Markov Network Estimation of Distribution Algorithm

MN-FDA: Markov Network Factorised Distribution Algorithm

MPM: Marginal Product Model

MRF: Markov Random Field

MWST: Maximum Weight Spanning Tree

PBIL: Population Based Incremental Learning

PGM: Probabilistic Graphical Model

PLS: Probabilistic Logic Sampling

RBGS: Repeated Bitwise Gibbs Sampler algorithm

RLD: Run Length Distribution

SVD: Singular Value Decomposition

UMDA: Univariate Marginal Distribution Algorithm

xvii



Chapter 1

Introduction

An optimisation problem is the problem to find the optimal or near optimal solution from

a specified set of feasible solutions using some measure for evaluating each individual solu-

tion. An algorithm to solve such problem is called an optimisation algorithm. This thesis

focuses on a class of general optimisation algorithm known as Evolutionary Algorithm

(EA).

Evolutionary Algorithms are inspired by Darwin’s theory of natural evolution. In nature,

the better species are evolved by means of natural selection and random variation. EA

follows this approach and simulates the natural selection and variation to evolve a better

solution to a problem. Both selection and variation have their distinct role in EA evolution.

Selection puts pressure on evolution of high quality solutions by selecting fitter solutions

from a population of solutions. Variation reproduces the next generation of population

based on the selected fitter solutions, and ensures the proper exploration of possible set

of solutions. Three well known EAs, Genetic Algorithm (GA) (Holland, 1975), Evolution

Strategy (ES) (Rechenberg, 1973) and Evolutionary Programming (EP) (Fogel, 1962), all

maintain the selection and variation concept of evolution.

In a GA, two genetic operators, crossover and mutation, are used to simulate the variation.

Crossover forms the new population by exchanging some parts between the selected solu-

1



tions. Mutation slightly modifies some parts of the newly formed solutions to introduce

some genetic variation in the new population.

The traditional crossover and mutation approach of variation in GAs has been found to

be limited for many optimisation problems, and therefore, most of the early research in

GAs has been focused on the modification of these operators to improve GA performance.

In recent years, a probabilistic approach to variation has been proposed where crossover

and mutation was replaced by two other operators: distribution estimation and sampling.

Distribution estimation is to estimate a probability distribution of solutions from popula-

tion, and sampling is to sample the distribution to generate a new population. Algorithms

using such approach to variation are called Estimation of Distribution Algorithms (EDAs)

(Mühlenbein & Paaß, 1996; Larrañaga & Lozano, 2002).

EDAs have been recognised as a powerful technique for optimisation. They have been

found to perform better on problems, where traditional GAs failed to give satisfactory

performance (Pelikan & Goldberg, 2003).

The performance of an EDA highly depends on how well it estimates and samples the

probability distribution. Lots of EDA research is focused in this area. In particular, di-

rected graphical models (Bayesian networks) have been widely studied and are established

as a useful approach to estimate and sample the distribution in EDAs. In this thesis we

propose an undirected graphical model (Markov Random Field) approach to estimate and

sample the distribution in EDAs.

1.1 Research Objective

The primary objective of our research is to propose and evaluate a framework of an

EDA based on Markov Random Field (MRF) approach to estimating and sampling the

distribution. This primary objective can be further divided into 5 parts:

1. To conduct an extensive survey of MRF in the context of EDAs

2



2. To study the use of solution fitness in approximating a MRF in EDAs

3. To conduct research on various ways to sample the MRF in EDAs

4. To implement a framework of an EDA using the MRF approach to estimate and

sample the distribution

5. To evaluate the performance of the implemented EDA in the range of optimisation

problems and compare the results with that of other EDAs

1.2 Outline of the thesis

The thesis is divided into nine chapters.

Chapter 2. Estimation of Distribution Algorithms

Chapter 2 describes Estimation of Distribution Algorithms. It starts by describing GAs:

the parent algorithm of EDAs, motivates the use of the probabilistic approach to variation

in the GA evolution and describes the general workflow of EDA. This chapter also presents

a survey of discrete EDAs.

Chapter 3. Probabilistic Graphical Models and EDAs

Many EDAs use the concept of Probabilistic Graphical Models (PGM) to estimate and

sample the distribution. Chapter 3 reviews the PGM in context of EDAs. It starts by

describing two well known PGMs: Bayesian networks and Markov Random Fields, reviews

different approaches to estimate and sample them and reviews their use in EDAs. More

focus is given to describing MRF in EDAs as this thesis proposes an estimation and

sampling technique based on MRFs.

3



Chapter 4. Fitness modelling approach to estimating parameters in

Markov Random Fields

Chapter 4 presents the proposed fitness modelling approach to estimate the parameters of

the MRF from the population of solutions. It describes the Hammersley-Clifford theorem

that establishes the equivalence between joint probability distribution for a MRF and

the Gibbs distribution. Using this theorem, a model of fitness function is derived that

approximates the energy function in the Gibbs distribution in terms of the fitness of a

solution. This model is called the MRF Fitness Model (MFM). A least square technique

is then presented that fits MFM to the population of solution and estimates the parameters

of the MRF.

Chapter 5. DEUM algorithm and a probability vector approach to sam-

pling

Chapter 5 introduces DEUM algorithm: a general framework of an EDA using the pro-

posed fitness modelling approach to estimate the MRF. It also proposes a probability

vector approach to sample the MRF and incorporates it into the DEUM framework. The

resulting DEUM is called DEUMpv. DEUMpv uses a simple model of distribution that

assumes no interaction between variables in the solution. This chapter also presents the

experimental results on the performance of DEUMpv, and compares them with that of

other EDAs with a similar model of distribution.

Chapter 6. DEUMd: direct sampling from Gibbs distribution

Chapter 6 presents DEUMd: an extension of the DEUMpv algorithm that directly samples

from the Gibbs distribution. It also presents the extensive experimental analysis on the

performance of DEUMd in a wide range of optimisation problems. Further, it describes

the cost benefit analysis of using the MRF approach to probabilistic modelling in DEUM

algorithms. Finally, it describes an important property of DEUM algorithms, that is, their

4



use of fitness to model the distribution and therefore their ability to perform optimisation

without using any explicit selection operators.

Chapter 7. Is-DEUM: A step towards multivariate DEUM

Chapter 7 extends DEUM algorithm to use a bivariate model of probability distribution.

The resulting DEUM is called Is-DEUM. This chapter presents two variants of Is-DEUM

that use different sampling technique, 1) Is-DEUMm with Metropolis sampling and 2) Is-

DEUMg with Gibbs sampling, and apply them to a well known Ising spin glass problem.

Further, it presents the experimental results on the performance of these algorithms and

compares them with that of other EDAs.

Chapter 8. Future Work

Chapter 8 presents the future directions to this research study. It outlines some of the

immediate future works that may be of significance to the development of more effective

DEUM algorithms.

Chapter 9. Conclusion

Chapter 9 highlights some of the important contributions made by our research study and

concludes the thesis.

5



Chapter 2

Estimation of Distribution

Algorithms

Since its introduction about a decade ago, the Estimation of Distribution Algorithm (EDA)

has established itself as a promising area of research for the evolutionary algorithm com-

munity. A growing number of EDA papers are being published each year including a

number of recent PhD theses (Pelikan, 2002; Bosman, 2003; Santana, 2003b). The EDA

was first proposed as a modification to the traditional GA. Since then, it has become a

discipline of its own within the field of evolutionary computation.

The aim of this chapter is to give a general introduction to EDAs. This chapter is in

two parts. The first part describes the motivation behind emergence of EDA. It starts by

introducing the GA: the parent algorithm of EDA. It then presents the motivation to the

emergence of the EDAs and describes the general framework of EDAs.

The second part reviews the EDA literature. Following Larrañaga et al. (1999) and Pelikan

et al. (1999b), EDAs are categorised according to the order of interaction between variables

taken into account by their model of distribution, and their workflow is briefly described.

Finally, this chapter concludes by identifying the need for further research on probabilistic

modelling and sampling in EDAs.

6



2.1 From Genetic Algorithms to the Estimation of Distrib-

ution Algorithms

Genetic Algorithms (GAs) (Holland, 1975) are a class of optimisation algorithm inspired

by Darwin’s theory of evolution. A GA encodes a solution as a string of symbols, or

chromosome, and evolves a population of chromosomes to obtain better solutions. GAs

have been successfully applied to solve a wide variety of problems from different application

areas such as engineering, science and business (Goldberg, 1989; Mitchell, 1997), and are

a subject of active research in the field of computational intelligence.

2.1.1 Genetic Algorithm

In a GA, a solution x = {x1, x2, .., xn} is encoded as a set of values, xi. The string of

values is known as a chromosome. Depending upon the problem type, a bit, real or integer

string can be used for the chromosome. In this thesis, we will mainly be concerned with

bit-string chromosomes. The number of characters in the string is known as chromosome

length and will be defined by n. Each solution, x, has an extra value associated with it

known as its fitness value, which measures the goodness of that solution. The fitness value

is calculated from given optimisation criteria that are modelled in the form of a function

known as fitness function f(x). For example, Figure 2.1 shows a bit-string chromosome

with chromosome length n = 6. Here, the fitness function is simply the sum of all the bits

in the chromosome 1.

The set of all possible solutions is known as the search space. For the 6 bit long chromosome

shown in Figure 2.1, the search space consist of 26 solutions.

The GA starts by initialising a population of solutions known as the parent population.

The main iteration then starts by performing selection, crossover and mutation operations,

and forms a child population that replaces the parent population. This process is then

iterated until some termination criteria are satisfied (see Figure 2.2). We will now consider
1In literature, this function is also known as Onemax function(Mühlenbein & Paaß, 1996)

7



Figure 2.1: A 6 bit long chromosome and its fitness function

the GA iteration in more detail.

Simple Genetic Algorithm

1. Generate initial population of solutions P of size M

2. Form a breeding pool by selecting N promising solutions from parent population P ,
where N ≤M

3. Perform crossover and mutation on breeding pool to get a new population (also
known as child population)

4. Replace parent population by child population and Go to step 2 if termination
criteria are not satisfied.

Figure 2.2: The pseudo-code of the Simple Genetic algorithm

Generation of initial population (parent population) P is done usually by choosing

each solution x at random. However, the output solutions of another search algorithm

could also be used as the initial population. Sometimes, the initial population is seeded

with solutions that are not random.

The selection operator is then applied to the population. The Selection operator selects

a set of solutions, D, from the parent population, P , according to some selection criteria.

Different selection methods can be used depending on the design of the algorithm. These

methods can be categorised into two groups 1) Proportional selection and 2) Ordinal

selection.

8



In proportional selection, first, the selection probability for each individual in the current

population is determined, and then sampled to make the breeding pool. The Fitness

proportionate selection (also known as Roulette wheel selection) (Goldberg, 1989) and

Boltzmann selection (de la Maza & Tidor, 1993) fall in this category.

In fitness proportionate selection, the selection probability ps(x) for a solution x is deter-

mined as

ps(x) =
f(x)∑

y∈P f(y)
(2.1)

In Boltzmann selection, the selection probability ps(x) for a solution x is determined as

ps(x) =
ef(x)/T∑

y∈P e
f(y)/T

(2.2)

Here, T is a parameter for the selection known as temperature.

In ordinal selection, selection probability is not calculated from the numerical value of

the fitness function. Instead the selection decision is based on the ranked order of fitness

values. Some of the popular ordinal selection methods include tournament selection, and

truncation selection (Goldberg, 1989; Mitchell et al., 1994; Davis, 1991).

In a typical tournament selection, the fittest out of two (or more) randomly chosen chromo-

somes from parent population is selected. In truncation selection, the N fittest solutions

from parent population is selected at once.

However, the general motive behind all selection methods is the same, namely to provide

a selection pressure in favour of better solution. As such, the selection process models the

idea of survival of the fittest.

The crossover operator exchanges some of the partial solution (substring) between

subset of the selected promising solutions. Different crossover operators can be used

for this purpose such as one point crossover, two point crossover and uniform crossover

(Mitchell et al., 1994; Davis, 1991). Crossover occurs with a predefined probability known

9



as crossover probability. Typically the crossover probability is greater than 50%. As an

example, Figure 2.3 shows one point crossover applied to two solutions resulting in two

offspring. The crossover point is usually chosen at random.

Figure 2.3: One point crossover between two solutions resulting in two offspring

The mutation operator is then applied to the resulting set of solutions. The mutation

operator models the random genetic variation between parent and offspring. In optimi-

sation, the mutation operator helps to explore other parts of the solution space that are

not attainable through crossover alone. It randomly changes the value of a part of the

solution to another possible value. Mutation also occurs with some probability. However,

the probability is usually so small that very little change is expected to occur. Figure 2.4

shows a typical single bit mutation occurring in a solution.

Figure 2.4: A single bit mutation

The new child population after mutation replaces the old parent population, and, if the

termination criteria are not met, the next GA iteration executes. Some of the common

10



termination criteria are to terminate after fixed number of iterations or to terminate when

a sufficiently good solution is found.

Figure 2.5: A simulation of a simple GA iteration

Figure 2.5 shows a single iteration of a GA to maximise the Onemax function. We can

see how selection, crossover and mutation interact together in the evolution of child pop-

ulation.

2.1.1.1 Selection and Variation in GA

As shown in Figure 2.6, the process of evolution in GAs, can be seen as the combination of

two processes; (1) Selection and (2) Variation. Selection drives evolution towards better

solutions by giving a high pressure to the selection of high-quality solutions. Crossover

and mutation together form the variation operator which helps to explore the possible

space of the candidate solutions.

In a GA, the crossover operator implicitly recombines partial solutions from the selected

set of good solutions. The mutation operator slightly distracts the recombined solutions

to explore its immediate neighbours. As the probability of mutation is very low, for most

of the GA, the main source of variation remains the crossover operator.

The key contribution of variation is to introduce novel solutions and therefore help to

maintain the diversity in the population. This prevents the population from converging

too fast to a premature solution and further allows an evolutionary algorithm to explore

11



Figure 2.6: GA evolution in terms of selection and variation

more of the search space. The selection and variation processes together form the basis

for the better evolution.

2.1.1.2 Linkage and the GA variation

In many optimisation problems, the variables in the solution interact with each other in

order to have a positive effect in the fitness of the solution. An example is the Plateau

problem shown in (2.3) (Mühlenbein, 1994), where the group of 3 adjacent bits interacts

with each other to have a positive contribution to the fitness.

f(x) =
m∑

i=1

g(x3i−2, x3i−1, x3i) (2.3)

where,

g(x1, x2, x3) =

 1 if x1 = 1 and x2 = 1 and x3 = 1

0 otherwise

In Onemax problem (Figure 2.1), however, each bits individually contributes to the fitness

function. This means there is no interaction between variables in the problem.

We use term linkage to refer to the interaction between variables in a solution. Although,

12



for the above described problems, the linkage is known in advance, for most of the real

world problem this information is not known. In order to successfully optimise a problem,

it is desirable to have the knowledge of the linkage between variables. This can then be

used to direct the search more efficiently.

Now let us recall the variation in GAs. Variation is intended to recombine good solutions

in the population by means of crossover and mutation operators, assuming that this will

reproduce even better solutions. However, neither crossover, nor mutation operator tries

to learn and exploit the linkage. Instead, they randomly choose the crossover and mutation

point. This random nature of crossover and mutation operators may sometime disrupt

the values of the interacting variables having positive effect in the fitness. This may either

lead the algorithm to take more computation time before converging to a good solution,

or lead the algorithm to converge to a sub-optimal or poor quality solution.

Much research in GAs has been focused on how to discover and exploit linkage. This work

can be categorised into two basic approaches.

The first approach is based on changing the representation of the problem. The idea is to

manipulate the string representation of solutions to prevent disruption of the values of the

interacting variables. Different reordering and mapping techniques have been introduced

for this purpose. The messy Genetic Algorithm (mGA) (Goldberg et al., 1989), the Gene

Express Messy Genetic Algorithm (GEMGA) (Kargupta, 1996), and the Linkage Learning

Genetic Algorithm (LLGA) (Harik, 1997) fall in this category.

The second approach is based on changing the variation process. The idea is to learn and

exploit the linkage by estimating a distribution from the population and sampling it to

generate the child population. Here, the traditional crossover and mutation approach to

variation is completely replaced by estimating and sampling a probability distribution (see

Figure 2.7). Next section describes this approach in more detail.

13



Figure 2.7: From crossover and mutation approach of variation to probabilistic approach
of variation

2.1.2 Estimation of distribution and sampling: An alternative approach

to variation

In statistics, distribution of a data (or dataset) is the probability of its observed (or

expected) occurrence in the database. Therefore, sometimes, distribution is referred to

as probability distribution. The estimation of distribution is the task of calculating the

probability distribution of the data in the database. In the case of GAs, generally, the esti-

mation of distribution, is to approximate the probability distribution of the good solutions

in the solution space given only the small subset of it. Once the probability distribution

is estimated, it can then be sampled to generate other solutions which are close to the

given set of good solutions. In order to make this concept clearer, let us give a simple

example of estimation of distribution and sampling. However, before doing that, we need

to introduce some notations used here after.

2.1.2.1 Notation

We follow the approach taken by Larrañaga et al. (1999).

14



Let Xi be a random variable, and xi be one of its possible values. We use ρ(Xi = xi)

(or simply ρ(xi)) to represent the generalised probability density function (gpdf)

over the point xi. Now let X = {X1, X2, .., Xn} be a vector of n random variables, and

x = {x1, x2, .., xn} be a vector of values taken by each variable of vector X, ρ(X = x) (or

simply ρ(x)) represents the joint generalised probability density function (jgpdf) of

X. Similarly, the generalised conditional probability density function of variableXi

taking value xi given value xj for the variableXj will be represented as ρ(Xi = xi|Xj = xj)

(or simply ρ(xi|xj)).

If the problem domain is discrete, i.e., if each Xi is a discrete random variable with

a finite set of values, ρ(Xi = xi) ≡ p(Xi = xi) (or simply p(xi)) is the univariate

marginal distribution of the variable Xi. If all the variables in X are discrete then

ρ(X = x) ≡ p(X = x) (or simply p(x)) will be the joint probability distribution

(jpd). Similarly, the conditional probability that Xi will take value xi given value xj

for the variable Xj can be denoted as ρ(Xi = xi|Xj = xj) = p(Xi = xi|Xj = xj) (or

simply p(xi|xj)).

Let XS be a sub-vector of X, and xS be a possible set of values taken by XS , then

p(XS = xS) (or simply p(xS)) is the marginal distribution of the set XS . Note that

univariate marginal distribution is a simple case of marginal distribution, where sub-vector

consist of a single variable.

Let XA and XB be disjoint sub vectors of X, and xA and xB be the possible subset

of values taken by them respectively, then p(XA = xA|XB = xB) (or simply p(xA|xB))

denotes the conditional probability of XA = xA given XB = xB and can be defined as

p(xA|xB) =
p(xA, xB)
p(xB)

(2.4)

Here, p(xA, xB) is the joint probability of subsets XA = xA and XB = xB.

The factorisation of the jpd, p(x), then follows

p(x) = p(x1|x2, .., xn)p(x2|x3, .., xn)...p(xn−1|xn)p(xn) (2.5)

15



(2.5) is also known as the chain rule of probability distribution.

2.1.2.2 An example of variation by estimation and sampling of a probability

distribution

We now regard a solution x = {x1, x2, .., xn} as a set of values taken by a set of random

variables X = {X1, X2, .., Xn} where xi ∈ {0, 1}. Then, the estimation of distribution

is to approximate the jpd p(x) = p(x1, x2, ..., xn), from the population of solutions P .

In general, calculation of p(x) involves calculation of probability for all 2n combinations

of x and therefore is not a feasible approach. However, depending on the linkage, p(x)

can be often factorised in terms of calculable marginal (or conditional) probability of its

interacting variables. Therefore, in order to estimate p(x), we need to 1) learn the linkage

and 2) estimate the marginal (or conditional) probabilities of the interacting variables.

Let us follow both of these tasks in a simple example.

Learn the linkage between variables : In general, given a set of solutions, a range

of statistical techniques can be used to learn the linkage between variables. They will be

reviewed in chapter 3. For our simple example, let’s assume that the linkage is known in

advance, where each variable, Xi ∈ X, only interacts with itself and does not interacts

with other variables. For such linkage, the formulation of jpd p(x) from (2.5), can be

factorised in terms of univariate marginal probabilities of its individual variables in X,

p(xi) 2, as

p(x) =
n∏

i=1

p(xi) (2.6)

Estimate probabilities: Now that we have got a factorised model for p(x), the next

task is to estimate the probabilities of the interacting variables. There are various ways

to do so. In our simple example, given a set of good solutions, D, from the population P ,

the univariate marginal probability of xi being 1, p(xi = 1), can be estimated by dividing

the number of solutions in D having 1 in the ith position by the total number of solution,
2The task of factorising p(x) is often known as probabilistic modelling and the factorised model

itself is known as the probabilistic model of p(x). The estimation of distribution is, therefore, sometimes
referred to as a task of estimating (or building) a probabilistic model.

16



N , in D.

p(xi = 1) =
1
N

∑
x∈D,xi=1

1 (2.7)

p(xi = 0) can also be calculated in similar way.

Sample distribution : Once we estimate p(x), (i.e. all the marginal probabilities), we

can then sample it to generate other instances of X. In our simple example, once we

estimate p(xi = 1), we can sample it to generate an xi for a child solution as

xi =

 1, if rand(0, 1) ≤ p(xi = 1)

0, otherwise

Here, rand(0, 1) is a random number between 0 and 1. Repeating this for each i ∈

{1, 2, .., n} will give us a child solution. This process can be repeated until we generate a

complete population, which can then be used to replace the parent population P .

Figure 2.8 shows our simple example of estimation of distribution and sampling for Onemax

problem.

Figure 2.8: A simulation of variation by means of estimation of distribution and sampling

As we can see, after selection, the crossover is not applied as would have been in GAs.

Instead, univariate marginal probabilities, p(xi), are calculated from the selected set of

solutions and sampled to generate the child population. 3

Although, the example presented here is one of the simplest examples of estimation of
3In Figure 2.8, only p(xi = 1) are calculated and sampled, however p(xi = 0) = 1− p(xi = 1) can also

be calculated and sampled in the similar way

17



distribution and sampling, it clearly distinguishes the probabilistic approach to variation

with the traditional crossover and mutation approach.

2.1.3 Estimation of Distribution Algorithm

The class of algorithms following the estimation of distribution and sampling approach to

variation is known as Estimation of Distribution Algorithms (EDAs) (Mühlenbein & Paaß,

1996; Larrañaga & Lozano, 2002). EDA is a developing area in the field of evolutionary

algorithms. A wide variety of EDAs using different techniques to estimate and sample the

probability distribution have been proposed and are the subject of active research among

the evolutionary algorithm community.

2.1.3.1 Motivation

The first and the foremost motivation, as we have stated earlier, behind the emergence

of EDAs is to identify and exploit the linkage between variables in the solution in order

to assist the evolution. However, there are two more factors, as noted by Larrañaga &

Lozano (2002), that also motivated the researchers towards a probabilistic approach to

evolution.

Firstly, the performance of a GA depends on a choice of parameters and design factors,

such as different crossover and mutation operators, probabilities associated with crossover

and mutation, population size and so on. Therefore, choosing an effective configuration

for a GA can become an optimisation problem in itself (Grefenstette, 1986). One of

the motivation behind the EDA was to minimise (or at least make it easy to set) the

parameters for the algorithm.

Secondly, the theoretical analysis of the GA is an extremely difficult task. Several theories

have been proposed to explain the GA evolution however a convincing theory is yet to

be developed. Another motivation behind the emergence of EDA is to achieve better and

more rigorous theoretical analysis of the evolutionary process (Larrañaga & Lozano, 2002).

18



2.1.3.2 EDA workflow

As do traditional GAs, all EDAs start by generating an initial population P consisting of

M solutions. The set D consisting of N solutions is then selected from P according to

some criteria. The estimation of distribution is then carried out from set D and used to

sample offspring to replace P . This iteration continuous until the termination criteria is

satisfied. The workflow of a general EDA is shown in Figure 2.9

Estimation of Distribution Algorithm

1. Generate initial (parent) population P of size M

2. Select set D from P consisting of N solutions, where N <= M

3. Estimate the probability distribution p(x) from D

4. Sample p(x) to generate offspring, and replace parent

5. Go to step 2 until termination criteria are meet

Figure 2.9: The pseudo-code of the general Estimation of Distribution Algorithm

As we can see from the pseudo-code (and also from the simulation), the task of estimating

the distribution and sampling lies in the very heart of the EDA workflow. The success

of an EDA heavily depends on these two tasks. The task of estimating the distribution

further depends on two more factors: 1) accuracy of the linkage 2) accuracy of estimation of

probabilities in the model of distribution. The general estimation of distribution algorithm,

therefore, can be seen as the combination of the three processes:

1. Linkage estimation

2. Probabilities estimation

3. Sampling of the distribution

We will devote a whole chapter (chapter 3) to describing different approaches to each

19



of these processes in EDAs. In next section, however, we present a survey of the EDA

literature.

2.2 Survey of discrete EDAs

In this section, we present a survey of discrete EDAs. The aim here is to categorise EDAs

according to the type of linkage used by their model of distribution (similar approach to

EDA categorisation can also be found in (Larrañaga et al., 1999; Larrañaga & Lozano,

2002; Pelikan et al., 1999b)), describe the motivation behind their emergence, and briefly

describe their workflow and any related works.

Depending upon type of linkage used by their model of distribution, EDAs can be divided

into three groups: Univariate, Bivariate and Multivariate.

2.2.1 Univariate EDAs

EDAs in this category assume each variable to be independent, i.e. do not consider any

interactions among variables in the solution. Therefore, the joint probability distribution,

p(x), becomes simply the product of univariate marginal probabilities of all variables in

the solution. Figure 2.10 shows the graphical representation of the linkage used by these

algorithms where each node represents a variable in the solution.

p(x) =
n∏

i=1

p(xi) (2.8)

The EDA presented in Figure 2.8 falls into this category.

Due to the simplicity of the model of distribution used, the algorithms in this category

are computationally inexpensive, and perform well on problems with no significant inter-

action among variables. However, these algorithms tend to fail on the problems, where

higher order interactions among variables exist. Population Based Incremental Learning

(PBIL) (Baluja, 1994), Univariate Marginal Distribution Algorithm (UMDA) (Mühlenbein

20



& Paaß, 1996), and Compact Genetic Algorithm (cGA) (Harik et al., 1999) all use uni-

variate models of probability distribution.

Figure 2.10: Graphical representation of linkage with no interaction between variables

Population Based Incremental Learning (PBIL)

One of the earliest works in the EDA field was Population Based Incremental Learning

(PBIL) algorithm proposed by Baluja (1994). PBIL was motivated by the idea of com-

bining GAs with Competitive Learning used in training Artificial Neural Networks. PBIL

starts with initialisation of a probability vector. In each iteration, it updates and samples

the probability vector to generate new solutions. Pseudo-code for general PBIL algorithm

is shown in Figure 2.11.

λ and µ are the parameters of the PBIL known as learning rate and mutation shift respec-

tively. Several different variants of PBIL have been proposed with some extension in the

method of updating probability vector. One of them is to update the probability vector

towards the single best solution rather than to update towards N best solutions. Another

possibility is to update not only towards the best solution but also to move away from the

worst solution. Some theoretical work and experimental results on PBIL can be found in

(Baluja, 1994, 1995; Höhfeld & Rudolph, 1997; Berny, 2000; González et al., 2001). Also

some applications of PBIL can be found in (Galić & Höhfeld, 1996; Inza et al., 2001c;

Petrovski et al., 2006).

21



Population Based Incremental Learning (PBIL)

1. Initialise a probability vector p = {p1, p2, ..., pn} with 0.5 at each position. Here,
each pi represents the probability of 1 for the ith position in the solution.

2. Generate a population P of M solutions by sampling probabilities in p

3. Select set D from P consisting of N promising solutions, where N <= M

4. Estimate univariate marginal probabilities p(xi) for each xi

5. For each i, update pi using pi = pi + λ(p(xi)− pi)

6. For each i, if mutation condition passed, mutate pi using
pi = pi(1− µ) + random(0 or 1)µ

7. Go to step 2 until termination criteria are meet

Figure 2.11: The pseudo-code of the Population Based Incremental Learning

Univariate Marginal Distribution Algorithm (UMDA)

Univariate Marginal Distribution Algorithm (UMDA) was proposed by Mühlenbein &

Paaß (1996), and is one of the early works in the field of EDAs. Different variants of

UMDA have been proposed, and the mathematical analysis of their workflows has been

carried out (Mühlenbein, 1998; Mühlenbein et al., 1999; González et al., 2003). Pseudo-

code for general UMDA algorithm is shown in Figure 2.12.

Univariate Marginal Distribution Algorithm (UMDA)

1. Generate a population P of M solutions

2. Select set D from P consisting of N promising solutions, where N <= M

3. Estimate univariate marginal probabilities p(xi) from D for each xi

4. Sample p(xi) to generate M new individual and replace P

5. Go to step 2 until termination criteria are meet

Figure 2.12: The pseudo-code of the Univariate Marginal Distribution Algorithm

22



The simulation presented in previous section (Figure 2.8) can be seen as the simulation

of UMDA for Onemax problem. Note that, UMDA can be seen as a variant of PBIL

when λ = 1 and µ = 0. The theoretical work on convergence of UMDA can be found

in (Mühlenbein & Paaß, 1996; Mühlenbein, 1998; Mühlenbein et al., 1999; Mühlenbein &

Mahnig, 1999a; González et al., 2003).

compact Genetic Algorithm (cGA)

Compact Genetic Algorithm (cGA) (Harik et al., 1999) is motivated by the previous work

done in the field of random walk model (Harik et al., 1997), and also assumes no interaction

between variables in solution.

cGA also maintains probability vector as in PBIL. However, unlike PBIL, cGA samples

only two solutions at a time, compares their fitness, and uses allele value of the winning

solution (i.e solution with the highest fitness) to update the probability vector, leaving the

probability vector unchanged in the position, where winning and loosing solution contains

the same value. The process continues until the probability vector converges. Pseudo-code

for general cGA algorithm is shown in Figure 2.13.

Compact Genetic Algorithm (cGA)

1. Initialise a probability vector p = {p1, p2, ..., pn} with 0.5 at each position. Here,
each pi represents the probability of 1 for the ith position in the solution.

2. Generate two solutions by sampling probabilities in p, and label winner to the fittest
and loser to the less fit solution.

3. For each i, update pi using following rule
if winner[i] 6= loser[i] then

if winner[i]=1 then pi = pi + λ
else pi = pi − λ

4. Go to step 2 until termination criteria are meet

Figure 2.13: The pseudo-code of the Compact Genetic Algorithm

23



In Harik et al. (1999), the λ is defined as 1/M , where M is the parameter of the algorithm.

Some recent work on parallelisation of cGA can be found in Lobo et al. (2005) and a

mathematical analysis on the performance of cGA can be found in Droste (2005).

2.2.2 Bivariate EDAs

Algorithms in this category consider pair-wise interactions among variables in the solu-

tion. Therefore, in contrast with univariate case, the probability model contains factors

involving the conditional probability of pairs of interacting variables. Obviously, in com-

parison to univariate EDAs, this class of algorithms performs better in problems, where

pair-wise interaction among variable exists. However, it fails in problems with multiple

variable interactions. Mutual Information Maximization for Input Clustering (MIMIC)

(de Bonet et al., 1997), Combining Optimizers with Mutual Information Trees (COMIT)

(Baluja & Davies, 1997) and Bivariate Marginal Distribution Algorithm (BMDA)(Pelikan

& Mühlenbein, 1999) all use bivariate models of probability distribution.

A graphical representation of the linkage used by these algorithms are shown in Figure

2.14.

Mutual Information Maximization for input clustering (MIMIC)

Mutual Information Maximization for input clustering (MIMIC) proposed by (de Bonet

et al., 1997) uses a chain model of probability distribution which can be written as:

p(x) = p(xπ1 |xπ2)p(xπ2 |xπ3)....p(xπn−2 |xπn−1)p(xπn) (2.9)

Here, π = {π1, π2, ..., πn} is a permutation of the numbers {1, .., n} used as an ordering

for the pair wise conditional probabilities. At each iteration, algorithm first tries to learn

the linkage, i.e. find π such that the model of p(x) in (2.9) approximates the model

in (2.5) as closely as possible. Kullback-Leibler divergence (Kullback & Leibler, 1951) is

used to measure the identicality between these two models. In most cases, searching over

24



all possible permutations of π is not feasible. MIMIC uses a greedy algorithm to find a

π, which however, does not always gives accurate model. Once the π is learnt, MIMIC

then estimates the pair wise conditional probabilities and sample them to get next set of

solutions.

Figure 2.14: Graphical representation of linkage with pair-wise interaction between vari-
ables

Combining Optimizers with Mutual Information Trees (COMIT)

Combining Optimizers with Mutual Information Trees (COMIT) proposed by Baluja &

Davies (1997, 1998) also uses pair-wise interaction among variables. The model of distri-

bution used by COMIT can be written as

p(x) =
n∏

i=1

p(xi|xj) (2.10)

Where, Xj is known as parent of Xi and Xi is known as a child of Xj . This model follows

a tree structure, i.e. no children (or grand-children) of a variable can be its parent.

This model is more general than the chain model used by MIMIC as two or more variables

can have a common parent. COMIT uses the Maximum Weight Spanning Tree (MWST)

(Chow & Liu, 1968) algorithm to construct the model. However, the tree model has its

limitations, i.e. excluding the root variable, every other variable should have a parent.

In (2.10), if Xi is the root variable then p(xi|xj) is generalised to univariate marginal

probability, p(xi).

25



Bivariate Marginal Distribution Algorithm (BMDA)

The Bivariate Marginal Distribution Algorithm (BMDA) was proposed by (Pelikan &

Mühlenbein, 1999) as an extension to UMDA. The model of distribution used by BMDA

can be seen as an extension to the COMIT model and can be written as

p(x) =
∏

Xk∈Y

p(xk)
∏

xi∈{X\Y }
p(xi|xj) (2.11)

where, Y ⊆ X is the set of root variables. Unlike COMIT, this model does not require

every variable to have a parent variable, i.e. can have more than one root variable. BMDA,

therefore, is a more generalised algorithm in this class and can cover both univariate inter-

action as well as bivariate interaction among variables. In order to detect the interaction

between two variables, BMDA uses Pearson’s chi-square statistics.

2.2.3 Multivariate EDAs

Any algorithms considering interaction between variables of order more than two can be

placed in this class. The model of probability distribution obviously becomes more complex

than the one used by univariate and bivariate EDAs. The complexity of constructing such

model increases exponentially to the order of interaction making it infeasible to search

through all possible models. Extended Compact Genetic Algorithm (ECGA) (Harik,

1999), Factorised Distribution Algorithm (FDA) (Mühlenbein et al., 1999), Bayesian Opti-

mization algorithm (BOA) (Pelikan et al., 1999a), Learning Factorised Distribution Algo-

rithm (LFDA) (Mühlenbein & Mahnig, 1999b), Estimation of Bayesian Network Algorithm

(EBNA) (Etxeberria & Larrañaga, 1999) all use multivariate model of probability distri-

bution. In recent years two more algorithm have been proposed by Santana (2003a, 2005)

falling in this category. They are Markov Network Factorised Distribution Algorithm

(MN-FDA) and Markov Network Estimation of Distribution Algorithm (MN-EDA).

Figure 2.15 shows the graphical representation of linkages used by these algorithms.

26



Extended Compact Genetic Algorithm (ECGA)

Extended Compact Genetic Algorithm (ECGA) has been proposed by Harik (1999) as

an extension to cGA. The model of distribution used in ECGA, and so called Marginal

Product Model (MPM), is distinct from other previously described models as they only

consider the marginal probabilities and do not include conditional probabilities. Also it

assumes that there is no overlapping interaction between variables i.e. a variable appearing

in a set of interacting variables cannot appear in another set. MPM used in ECGA can

be defined as

p(x) =
∏
c∈m

p(xc) (2.12)

Where, m is the set of disjoint subsets in n and p(xc) is the marginal probability of set

of variables xc in the subset c. ECGA uses Minimum Description Length (MDL) metric

(Rissanen, 1978) to measure the goodness of fit of the MPM model and uses greedy search

to find a good MPM model.

If the constructed model is correct, and the problem domain does not contain overlapping

interactions, then ECGA works well. However, not all real life problems are of this kind

and can often have overlapping interactions. In such case, ECGA can fail. Some recent

works of Sastry et al. (2004); Sastry & Goldberg (2004) has applied efficiency enhancement

techniques, such as Building blocks-wise crossover and Building blocks-wise mutation, to

ECGA.

Factorised Distribution Algorithm (FDA)

The Factorised Distribution Algorithm (FDA) was proposed by Mühlenbein et al. (1999)

as an extension to UMDA. In order to estimate the distribution, FDA requires the linkage

between variables to satisfy the running intersection property 4 (Lauritzen, 1996). A jpd,

p(x), for such linkage can be factorised in terms of conditional probabilities between sets of

interacting variables. In general, FDA requires the linkage information in advance, which
4see chapter 3 for more on running intersection property

27



Figure 2.15: Graphical representation of linkage with multivariate interaction between
variables

may not be available in a real world problem. However, if the linkage satisfies running

intersection property, FDA has been shown to solve GA hard problems very effectively.

An extension of FDA called the Learning Factorised Distribution Algorithm (LFDA),

has been proposed by Mühlenbein & Mahnig (1999b). LFDA does not require advance

knowledge of linkage. Some theoretical analysis on FDA can be found in (Mühlenbein

et al., 1999; Mühlenbein & Mahnig, 1999a,b, 2001a; Zhang & Mühlenbein, 1999; Zhang &

Muehlenbein, 2004).

Bayesian Optimization algorithm (BOA)

Bayesian Optimization algorithm (BOA) proposed by Pelikan et al. (1999a) models the

jpd, p(x), in terms of a set of conditional probabilities as

p(x) =
n∏

i=1

p(xi|Πi) (2.13)

28



Where, Πi is reffered to as parents of Xi, and Xi is referred to as child of Πi. Πi is a set

of variables having conditional interaction with Xi. Also no variable in Πi can have Xi

or any children of Xi as their parent. This last condition is known as a Directed Acyclic

Graph (DAG) principle.

The model of distribution shown in (2.13) is known as Bayesian network 5 (Pearl, 1988).

The General workflow of BOA is shown in Figure 2.16.

An extension to BOA called hierarchical BOA (hBOA) has also been proposed by Pelikan

& Goldberg (2000). The idea is to improve the efficiency of BOA by using a Bayesian

network with a local structure (Chickering et al., 1997) to model the distribution and a

restricted tournament replacement strategy based on work of Harik (1994) to form the new

population. hBOA has been reported to solve two class of complex optimisation problem

known as Ising spin glasses and MAXSAT (Pelikan & Goldberg, 2003). Some recent works

on efficiency enhancements of hBOA can be found in (Pelikan et al., 2005a,b).

BOA, EBNA, LFDA

1. Generate a population P of M solutions

2. Select N promising solution from P , where N <= M

3. Estimate a Bayesian network from selected solutions

4. Sample Bayesian network to generate M new individual and replace P

5. Go to step 2 until termination criteria are meet

Figure 2.16: The pseudo-code of BOA, EBNA, LFDA

Estimation of Bayesian Network Algorithm (EBNA)

Estimation of Bayesian Network Algorithm (EBNA) was proposed by (Etxeberria &

Larrañaga, 1999; Larrañaga et al., 2000) and also uses Bayesian networks (2.13) as its
5more detail description of Bayesian networks is in chapter 3

29



model of probability distribution. The workflow of EBNA is similar to that of BOA (Fig-

ure 2.16). Depending on the metric used to measure the quality of a Bayesian network,

three different variants of EBNA have been proposed. They are:

1. EBNAPC using the PC algorithm of Spirtes et al. (1991)

2. EBNABIC using Bayesian Information Criterion (BIC) metric (Schwarz, 1978)

3. EBNAK2+pen using K2 algorithm with a penalising factor (Cooper & Herskovits,

1992)

EBNA has been applied for a range of different optimisation problems, such as graph

matching (Bengoetxea et al., 2000, 2001b,a), partial abductive inference in Bayesian net-

works (de Campos et al., 2001), feature subset selection (Inza et al., 2000, 2001b,a), job

scheduling problem (Lozano et al., 2001b), rule induction task (Sierra et al., 2001), trav-

elling salesman problem (Robles et al., 2001), partitional clustering (Roure et al., 2001),

Knapsack problems (Sagarna & Larrañaga, 2001), and software testing (Sagarna & Lozano,

2005, 2006). Also some parallel approach to EBNA has been proposed in (Lozano et al.,

2001a; Mendiburu et al., 2005).

Learning Factorised Distribution Algorithm (LFDA)

Learning Factorised Distribution Algorithm (LFDA) has been proposed as an extension

to the FDA (Mühlenbein & Mahnig, 1999b). Unlike FDA, LFDA does not require linkage

in advance. Rather, in each iteration, it computes a Bayesian network and samples it to

generate new solutions. By such, workflow of LFDA is very similar to that of BOA and

EBNA algorithms (Figure 2.16).

30



Markov Network Factorised Distribution Algorithm (MN-FDA) and Markov

Network Estimation of Distribution Algorithm (MN-EDA)

Markov Network Factorised Distribution Algorithm (MN-FDA) and Markov Network Es-

timation of Distribution Algorithm (MN-EDA) has been recently proposed by Santana

(2003a, 2005). They use Markov network (Pearl, 1988; Li, 1995) as the model of dis-

tribution for p(x). MN-FDA uses a technique called junction graph approach, whereas

MN-EDA uses a technique called Kikuchi approximation to estimate a Markov network.

Detail description of Markov network and both of this approach is described in chapter

3. Please see Santana (2003a), Santana (2005), and Santana et al. (2005) for more on

workflow and experimental results of these algorithms.

2.3 Summary

Evolution in GAs can be seen as combination of two processes: Selection and Variation.

Selective pressure favours the evolution of high-quality solutions. Variation helps to ex-

plore the search space and exploit those regions containing better solutions. An important

factor in the success of this process is the linkage between variables which tells how vari-

ables in the solution interact to have a positive effect in the fitness function. Variation

that is incompatible with linkage may not effectively optimise the fitness function. The

need to discover linkage has lead to the development of the probabilistic approach to vari-

ation, where the linkage is used to estimate the distribution of the solutions and sampled

to generate the child population. Algorithms using this approach to variation are known

as EDAs.

The aim of this chapter was to give a general introduction to EDAs. We described GAs

as the parent algorithms to EDAs. Then we described the motivation for probabilistic

approach to variation followed by the workflow of EDA. We also presented a literature

survey on discrete EDAs where we categorised them according to the types of linkage they

use, briefly described their model of distribution and their workflow, and described some

31



related works on their applications.

Being the main source of variation, the success and failure of an EDA mainly depends

on how well it detects the linkage to model the probability distribution and samples it to

generate the child population. Therefore, one of the key areas of interest in EDA research

is the development of effective techniques for estimation and sampling of the distribution.

An increasing ammount of research work is being carried out in this area. The presented

thesis introduces one such approach based on probabilistic graphical models and can be

seen as a step forward towards this area of research.

32



Chapter 3

Probabilistic Graphical Models

and EDAs

The success or failure of an EDA depends on how well it estimates and samples the joint

probability distribution (jpd), p(x), of the solutions in the population. In the previous

chapter we have shown how p(x) can be estimated by factorising it in terms of the marginal

(or conditional) probability of sets of interacting variables in the solutions. A factorised

jpd can be efficiently sampled. All of the EDAs we have reviewed in the previous chapter

factorise p(x) in terms of marginal/conditional probabilities 1.

One of the most effective ways to represent any factorised distribution is as a Probabilis-

tic Graphical Model (PGM) (Pearl, 1988; Whittaker, 1990; Lauritzen, 1996; Jordan

et al., 1999; Jordan, 2004). All three models of distribution described in the previous chap-

ter can be represented as PGM. In fact many EDAs use the concept of PGM to estimate

and sample the probability distribution. Furthermore, our approach to the estimation

of distribution and sampling is also motivated by the use of a class of PGM. Therefore,

before going further to describe our approach, it is essential to understand the PGM in

the context of EDA.
1except MN-EDA, which will be discussed later in this chapter

33



In this chapter, we describe PGM. The objective here is twofold:

1. To introduce and review the PGM in context of EDAs

2. To form the basis for the remaining part of the thesis by introducing the concepts

and terminology associated with the Markov Random Field approach to estimation

of distribution proposed in this thesis.

We start by introducing the basic components of PGM. We then categorise PGM into

two groups according to the structure they use: 1) Directed and 2) Undirected. We then

describe each of these categories in detail. As the work presented in this thesis uses an

undirected PGM approach to estimation and sampling, more focus will be given to describe

them and their use in EDAs.

3.1 Probabilistic Graphical Models

Probabilistic Graphical Models (PGM) can be seen as a merger of two disciplines, proba-

bility theory and graph theory (Jordan, 1998). They consist of two components: structure

and parameters.

The structure of a PGM is the interaction between random variables depicted in the form

of a graph. In context of EDAs the structure of a PGM is the linkage between variables

in the solution. Each node of the graph represents a random variable. The presence

of an edge between two nodes represents the existence of an interaction between them.

Similarly, the absence of an edge between two nodes represent the absence of interaction

between them.

The parameters of a PGM are a collection of potential functions associated with a node

(or set of nodes) in the structure of the model (Jordan, 1998; Smyth, 1998). The potential

function represents the strength of the interaction between variables. In general EDAs, the

parameters of the PGM are usually a collection of marginal (or conditional) probabilities.

34



According to the type of structure used, PGMs can be categorised into two groups.

1. Directed models (Bayesian networks)

2. Undirected models (Markov Random Fields/Markov networks)

Traditionally, undirected models have been extensively used in the physics and vision

communities and directed models have been widely used in the AI and Bayesian statistics

communities (Smyth, 1998; Murphy, 2002). In the EDA literature, Bayesian networks have

been frequently applied and are established as a useful approach for modelling the distrib-

ution. However, works published in recent years (Shakya et al., 2004b, 2005a,b,c; Santana,

2003a, 2005) have used Markov Random Field approaches to probabilistic modelling in

EDAs.

3.2 Bayesian networks

A Bayesian network can be regarded as a pair (B,Θ), where B is the structure of the

model and the Θ is a set of parameters of the model. The structure B is a Directed

Acyclic Graph (DAG) 2, where each node corresponds to a variable in the modelled data

set and each edge corresponds to a conditional dependency. A set of nodes Πi is said to

be the parent of Xi if there are edges from each variable in Πi pointing to Xi.

The parameter Θ = {p(x1|Π1), p(x2|Π2), ..., p(xn|Πn)} of the model is the set of conditional

probabilities, where each p(xi|Πi) is the set of probabilities associated with a variable

Xi = xi given the different configuration of it’s parent variables Πi.

Figure 3.1 shows the structure and the parameters of a Bayesian network, where each

variable Xi is binary. i.e. xi ∈ {0, 1}. By the chain rule of probability (2.5), the jpd of
2A DAG is a graph where each edge joining two nodes is a directed edge, and also there is no cycle in

the graph i.e. it is not possible to start from a node and travelling towards the correct direction return
back to the starting node

35



Figure 3.1: A Bayesian network on 5 binary random variables

network presented in Figure 3.1 is

p(x1, x2, x3, x4, x5) = p(x1)p(x2|x1)p(x3|x1, x2)p(x4|x1, x2, x3)p(x5|x1, x2, x3, x4) (3.1)

However, the conditional independence relationships encoded in the Bayesian network

says that a variable Xi is independent of all other variables given its parents Πi. In

Figure 3.1, this follows X5 is independent of X1, X2 and X4 given X3. Therefore,

for this network, we can say that p(x5|x1, x2, x3, x4) = p(x5|x3). Similarly we can say

p(x4|x1, x2, x3) = p(x4|x3) and p(x2|x1) = p(x2). This gives the compact factorisation for

the joint probability distribution shown in (3.1) and can now be written as:

p(x1, x2, x3, x4, x5) = p(x1)p(x2)p(x3|x1, x2)p(x4|x3)p(x5|x3) (3.2)

In general, given a set of variables X = {X1, X2, .., Xn} a joint probability distribution

p(X = x) (or simply p(x)) for any Bayesian network is

p(x) =
n∏

i=1

p(xi|Πi) (3.3)

In recent years, Bayesian networks have been the subject of growing interest in the Arti-

ficial Intelligence (AI) community. There is now a substantial literature in this field, with

36



major publications including (Pearl, 1988; Jensen, 1996, 2001; Lauritzen & Spiegelhalter,

1988; Lauritzen, 1996). As we can see from the survey in previous chapter, Bayesian

networks have been widely used to model the distribution in EDAs. In fact, apart from

EcGA, FDA, MN-EDA and MN-FDA, the model of distribution used by rest of the re-

viewed EDAs can be represented as a Bayesian network.

3.2.1 Learning the Structure of a Bayesian network

Bayesian networks provide a compact representation for the interaction between variables

in a solution. This provides a tool to factorise a jpd. Nevertheless, the problem of

determining the structure of the network remains. It has been shown that this problem

in itself is NP hard (Chickering et al., 1994). However, researchers have come up with

different techniques to address this problem. Following the approach taken by Larrañaga

& Lozano (2002) we categorise them into two groups.

1. Detecting conditional independencies

2. Score+Search methods

3.2.1.1 Detecting conditional independencies

This technique starts with a complete undirected graph, i.e. the graph where each node is

connected to every other node. Then, by removing the edges corresponding to the mutually

independent nodes, simplifies the graph. These mutually independent nodes are identified

by applying a statistical independence test 3. Once a simplified undirected graph has been

found, some adjacency rule described in Spirtes et al. (1993); Larrañaga & Lozano (2002)

is used to add the direction for the edges. EBNApc (Etxeberria & Larrañaga, 1999) and

BMDA (Pelikan & Mühlenbein, 1999) 4 are based on detecting conditional independencies

to find the structure for Bayesian networks.
3In section 3.3.1.2 one such test is described
4described earlier in chapter 2

37



3.2.1.2 Score+Search methods

Score+Search techniques are composed of two elements: a Scoring metric and a Search

procedure.

Scoring metrics

Given a network structure, a scoring metric measure the quality of that structure. In GA

terms, it can be seen as the fitness function of the structure. As mentioned in (Pelikan,

2002), two approaches to scoring has been used in EDAs: Bayesian Metrics and Minimum

Description Length Metrics.

Bayesian metrics (Heckerman et al., 1994; Cooper & Herskovits, 1992) use Bayes rule to

measure the quality of a network structure by computing a marginal likelihood, p(B|D), of

the structure B with respect to the given data set, D. The higher the marginal likelihood

of the structure is, the better the structure represents the dependences in the data set. In

the context of EDAs, the dataset D is the set of selected solutions from the population P .

In general, computing the marginal likelihood of a structure requires the computation of

a normalisation constant involving all possible network structures and their parameters.

However, some general assumptions about the data are usually made in order to efficiently

compute the marginal likelihood (Cooper & Herskovits, 1992; Heckerman et al., 1994;

Larrañaga & Lozano, 2002).

EBNAK2+pen and BOA (with BD metric) use Bayesian metrics to compute Bayesian net-

works. Bayesian metrics tend to be more sensitive to the noise in data set D (Pelikan,

2002). This often results in a complicated network structure with unnecessary dependen-

cies. To avoid this situation, researchers often restrict the number of dependencies allowed

to a node to a fixed value.

Minimum Description Length (MDL) Metrics (Rissanen, 1978) are based on the idea

that good models are those that minimise the amount of space required to represent the

model and at the same time maximise the number of regularities in the data encoded by

38



the model. MDL tries to give a higher score to networks that balance these two criteria.

In contrast to Bayesian metrics, MDL metrics tend to be less sensitive to the information

contained by data, often resulting in network model that does not capture all the necessary

interactions (Pelikan, 2002). To overcome this situation, MDL requires large number of

samples.

The three EDAs described in previous chapter: EcGA (Harik, 1999), BOA (with BIC)

(Pelikan, 2002) and EBNABIC (Larrañaga & Lozano, 2002) uses MDL metrics to construct

a Bayesian network.

Search procedures

Once a scoring metric to measure the goodness of the structure is chosen, a search through

the space of possible models should be performed in order to find a good model. This

task in itself is NP hard (Chickering et al., 1994). Different search heuristics can be used

for this purpose. In EDAs, researchers tend to use greedy heuristics, mainly due to their

simplicity and the acceptable quality of results produced by them. Here, we describe a

greedy search method known as Algorithm B (Buntine, 1991). It starts with an initial

structure which is often a structure with no edges. Then at each step adds an edge to the

structure that gives maximum improvement to its quality. This continues until no further

improvement can be made. It is important to ensure that the added edge do not discard

the DAG principle, i.e. do not create cycles, in the structure.

3.2.2 Parameter Learning and Sampling a Bayesian network

In the context of EDAs, parameter learning for a Bayesian network is a fairly simple task

in comparison to structure learning. This is because the value of each variable in the

selected set of solutions is known. In other words, the dataset D is complete. Parameters,

Θ, are calculated by counting the frequency of variable instances from the D according to

the structure of the network. An example is shown in (2.7).

The sampling process is again a trivial task. This is mainly due to the fact that the

39



constructed network structure is a DAG and therefore naturally gives the order in which

to sample the variables. The idea is to sample a variable Xi in the sequence such that

all the parent variable of Xi, Πi, are generated prior to sampling Xi. In literature this

method for sampling a Bayesian network is also known as Probabilistic Logic Sampling

(PLS) (Henrion, 1988).

3.3 Markov Random Fields

Markov Random Fields (MRFs) are an emerging approach to estimating the distribu-

tion in EDAs (Shakya et al., 2004b, 2005b,a,c; Santana, 2003a, 2005). In comparison to

Bayesian networks, they have not been as thoroughly studied in the EDA literature. This

thesis proposes a novel technique based on MRFs to estimate the distribution in EDAs.

Therefore, in this section we describe MRFs and also explain their relevance to EDAs.

Figure 3.2: A Markov Random Field on 6 random variables

A Markov Random Field is a pair (G,Ψ), where G is the structure and the Ψ is the

parameter set of the network. G is an undirected graph where each node corresponds

to a random variable in the modelled data set and each edge corresponds to conditional

dependencies between variables. However, unlike Bayesian networks, the edges in Markov

Random Fields are undirected. Here, the relationship between two nodes should be seen

as a neighbourhood relationship, rather than a parenthood relationship. We use N =

40



{N1, N2, ..., Nn} to define a neighbourhood system on G, where each Ni is the set of nodes

neighbouring to a node Xi
5.

A MRF is characterised by its local Markov property known as Markovianity (Besag,

1974; Li, 1995) which states that a node Xi can be completely defined by knowing only

its neighbouring nodes Ni. In terms of probability, this can be written as p(xi|x−{xi}) =

p(xi|Ni). Ni is sometimes referred to as Markov Blanket for Xi (Murphy, 2002).

A MRF can be also characterised by its global Markov property, which is defined in terms

of the structure of a graphical model as follows: two (sets of) nodes, A and B, are condi-

tionally independent given a third set, C, if all paths between the nodes in A and B are

separated by a node in C (Murphy, 2002). In Figure 3.2, node X1 is conditionally inde-

pendent of X5, X4 and X6 given X2 and X3. Global Markov property helps to formulate

the joint probability distribution, p(x), for an MRF.

Let us first define some of the related terms.

Definition 3.3.1 (Clique) Given an undirected graph G, a clique is a fully connected

subset of the nodes.

Definition 3.3.2 (Sub Clique) Given an undirected graph G, a sub clique of a clique is

a fully connected subset of nodes within that clique.

Definition 3.3.3 (Maximal Clique) A clique is called maximal, if it is not a sub clique

of any other clique.

Definition 3.3.4 (Singleton Clique) A clique is called singleton if it consist of a single

node from G.

In order to formulate p(x) for a MRF, we first need to define its parameters in terms of

cliques in G.
5In literatures, MRF is also defined in terms of sites and neighbourhood system (Besag, 1974; Li, 1995),

where a site corresponds to a node Xi

41



The parameters of a MRF, Ψ = {ψ1(c1), ψ2(c2), ..., ψm(cm)}, is a set of positive potential

functions defined on the set of cliques C = {C1, C2, ..., Cm} of structure G. In general,

the set C can consist of all possible cliques in G, i.e. all maximal cliques, their sub cliques

including singleton cliques. However, it is always possible to consider only the maximal

cliques in C and specify the parameters Ψ. We use ci to denote the set of values taken by

the set of variables in the clique Ci. ψi(ci) is a potential function defined over clique Ci

reflecting the neighbourhood relationship between the nodes in Ci. They are also known

as clique potential functions.

For example, the graph shown in Figure 3.2 has four maximal cliques

C1 = {X1, X2, X3}, C2 = {X2, X3, X4}, C3 = {X2, X5}, C4 = {X3, X6}

The jpd p(x) for the structure shown in Figure 3.2 can be factorised in terms of the clique

potential functions as

p(x1, x2, x3, x4, x5, x6) =
1
Z
ψ1(x1, x2, x3)ψ2(x2, x3, x4)ψ3(x2, x5)ψ4(x3, x6) (3.4)

Where, Z is a normalising constant. In general, given a set of variables X =

{X1, X2, .., Xn} a joint probability distribution p(X = x) or simply p(x) for any MRF

is

p(x) =
1
Z

m∏
i=1

ψi(ci) (3.5)

Where, m is the number of cliques in the structure G. Z =
∑

x∈Ω

∏m
i=1 ψi(ci) is the

normalising constant known as the partition function which ensures that
∑

x∈Ω p(x) = 1.

Here, Ω is the set of all possible solutions.

3.3.1 Learning the Structure of a Markov Random Field

As we shall show in the subsequent sections of this chapter, learning the structure of a

MRF in EDAs is a comparatively simpler task than the parameter learning and sampling.

42



There are several methods that can be applied for learning structure of a MRF. We review

two of them due to their use in EDAs.

1. Statistical independence test (Santana, 2005)

2. Linkage detection algorithm (Heckendorn & Wright, 2004)

3.3.1.1 Statistical independence test

The general idea behind this method is as follows: it starts with a complete undirected

graph, then by removing the edges corresponding to the mutually independent nodes,

simplifies the graph. These mutually independent nodes are identified by applying an

independence test. Different statistical test can be applied for this purpose. Here we

restrict them to the chi-square test (Marascuilo & McSweeney, 1977).

Given a dataset D, chi-square statistic test states that, if the bivariate distribution of a

pair, Xi = xi andXj = xj inD, is equal to the product of their univariate distribution then

they are statistically independent, i.e. in terms of probability, if p(xi, xj)−p(xi)p(xj) = 0,

variables are fully independent for that particular configuration (however, in practice, a

threshold value instead of 0 is used, so that partial dependency can also be considered).

To conduct the independency test between Xi, Xj in general, we need to extend this for

all of their configurations. This is shown below

X2
i,j =

∑
xi,xj

(p(xi, xj)− p(xi)p(xj))2

p(xi)p(xj)
(3.6)

For binary case, variables Xi and Xj are said to be 95% independent if the threshold of

X2
i,j < 3.84 is true.

In general, chi-square statistic compares the observed against expected values and can be

written as:

X2 =
∑ (observed− expected)2

expected
(3.7)

Some use of chi-square to find both undirected and directed network structure can be

43



found in Santana (2003b, 2005) and Pelikan & Mühlenbein (1999) respectively.

The chi-square statistic can be further extended to find the interaction between two vari-

ables given a third variable. We call it a conditional independency test of order 1. This

can be written as follows:

X2
i,j|k =

∑
xi,xj ,xk

(p(xi, xj |xk)− p(xi|xk)p(xj |xk))2

p(xi|xk)p(xj |xk)
(3.8)

Now let us define the steps of the algorithm to find the structure using the chi-square

statistic:

1. Start with a complete undirected graph.

2. For each pair of variablesXi andXj , perform the chi square test with some threshold.

If the result is less than the threshold, the variables are independent to each other

and the edge between them is removed.

3. For the resulting network, perform conditional independence test of order 1 and

if independency is found, remove the edge. This step may further simplify the

structure.

Theoretically, this process can be extended to check higher order conditional in-

dependency of order up to n − 1. Then the resulting structure will be the exact

dependency structure for the given data set D. However doing this is computa-

tionally expensive. Therefore, usually in real life applications, 1st order dependency

check is taken as sufficient criteria to get a useful model.

3.3.1.2 Linkage Detection Algorithm

A recently proposed EDA called Linkage Detection Factorization Algorithm (LDFA) pro-

posed by Wright & Pulavarty (2005) uses Linkage detection algorithm of Heckendorn

& Wright (2004) to find the interaction between variables. Linkage detection algorithm

requires binary representation of solution x and also requires the maximum degree of in-

44



teraction between bits, k, to be specified in advance. To test the interaction between

two bits, this algorithm records the change in fitness while flipping each bit individually

and also while flipping them together. If the sum of change in fitness for flipping each

bit individually is different than the change in fitness of flipping both bits together, then

there is an interaction between them. This can be easily extended to identify higher or-

der interaction between variables. The complexity of linkage detection algorithm grows

exponentially to the order of interaction taken into account (Heckendorn & Wright, 2004;

Wright & Pulavarty, 2005).

3.3.2 Parameter Learning and Sampling a Markov Random Field

Once the structure has been found, parameter learning and sampling can be done. As

stated earlier, in MRF, this task is comparatively more complex than in Bayesian net-

works. In general, the parameter learning in MRF involves the calculation of the partition

function, Z, that is exponential in the number of nodes and therefore is not feasible to cal-

culate in general conditions. Sampling the network is also a difficult task, mainly because

of the undirected structure of the network. It does not provide the ordering in which to

learn or sample. There exist several techniques to overcome the problem of learning and

sampling the MRFs. We review three of them as they have been exploited in EDAs.

1. Junction tree approach

2. Junction graph approach

3. Kikuchi approximation approach

Before describing these approaches, we need to give definitions to some of the terms used

here after. Figure 3.3 shows the structure of a MRF on 10 random variables, where a

clique and a maximal clique are also shown.

Definition 3.3.5 (Maximum Clique) A clique is called maximum, if it has the highest

45



Figure 3.3: An undirected graph on 10 random variables, showing a clique, a maximal
clique and a maximum clique

number of edges among all cliques in G. There may be more than one maximum clique in

a graph.

Figure 3.4: A junction graph for the undirected graph shown in Figure 3.3

Definition 3.3.6 (Junction Graph) A junction graph of the undirected graph G is a

graph, where each node corresponds to a maximal clique of G. There is an edge between

two nodes if their corresponding cliques overlap.

Definition 3.3.7 (Chordal Graphs) An undirected graph G is said to be chordal, if all

the cycles made of more than three edges in G has a chord. Chordal graph is also known

as triangulated graph.

Definition 3.3.8 (Junction Tree) In a chordal graph, if there is a common node Xi in

any two maximal cliques Cj and Ck, and it is possible to construct a tree connecting all

46



the maximal cliques where, Cj and Ck are either neighbouring nodes or all the nodes in

the path joining Cj and Ck contains Xi, then such tree is called a junction tree.

Figure 3.5: An undirected chordal graph and a junction tree associated with it

Definition 3.3.9 (Running Intersection Property) A junction tree follow the run-

ning intersection property, which states that, if there is a common variable Xi in any two

nodes Cj and Ck, then they are either a neighbouring nodes in the tree, or all the nodes

in the path connecting them also contains Xi.

3.3.2.1 Junction tree approach

The junction tree approach, (also known as a valid factorisation approach) (Lauritzen

& Spiegelhalter, 1988) can be applied for the case where the discovered structure of the

MRF can be correctly represented as a junction tree. If the structure of the network is a

junction tree then the running intersection property becomes true and the jpd shown in

(3.5) can be written in terms of marginal/conditional probabilities as follows:

p(x) =
m∏

i=1

p(ci) (3.9)

where,

p(ci) = p(ri|si)

Here, a clique Ci = ci is devided into two sets Ri = ri and Si = si. Ri is known as

the residual and Si is known as the separator of the clique Ci (Mühlenbein et al., 1999).

For example, for the junction tree shown in Figure 3.5, the jpd in terms of residual and

47



separator can be written as

p(x1, x2, x3, x4, x5, x6, x7) = p(x1, x2, x3)p(x4|x2, x3)p(x5|x1, x2)p(x6|x1, x3)p(x7|x3, x6)

(3.10)

The parameter estimation and sampling of a junction tree is a process similar to the

parameter estimation and sampling of a Bayesian network 6. The main idea being estimate

(or sample) Si before estimating Ri.

For cases, where, the network structure cannot be represented as a junction tree, the

method known as triangulation should be performed in order to first triangulate the net-

work structure. There are two ways to triangulate a graph.

1) By adding some edges: The advantage of this approach is that the structure considers

more dependencies which may result in better approximation of distribution. However,

the disadvantage is that the graph may become dense and the size of maximum clique may

increase resulting in high complexity to compute the marginal/conditional probabilities

and therefore increasing the computational complexity.

2) By removing some edges: The advantage of this approach is that the graph gets less

dense increasing the efficiency of estimating marginal/conditional probability. However, it

may remove important dependency and therefore can result in less accurate approximation

of distribution.

In the context of EDAs, the junction tree approach has been first used in FDA (Mühlenbein

et al., 1999; Mühlenbein & Mahnig, 1999a,b). A recent EDA called LDFA proposed by

Wright & Pulavarty (2005) also uses junction tree approach.

Note that, by applying moralisation: a procedure to transform the directed graph of

a Bayesian networks to an undirected graph, the junction tree approach has also been

used to learn the parameters for Bayesian networks. For more information on this topic,

interested readers are recommended to see (Jensen & Jensen, 1994; Jensen, 1996; Jordan
6In fact, any MRFs that can be factorised as a junction tree can also be represented as a Bayesian

network

48



et al., 1999).

3.3.2.2 Junction graph approach

The junction graph approach, (also known as invalid factorisation approach (Santana,

2003a)), extends the junction tree approach and can be applied even when the structure

of a MRF cannot be correctly represented as a junction tree. The MN-FDA proposed by

Santana (2003a,b), uses such approach to estimate and sample the distribution.

Definition 3.3.10 (Ordered Junction Graph) An ordered junction graph is a junc-

tion graph that satisfies following conditions:

• It has an associated ordering of the nodes.

• It has a distinguished node called the root.

• A node belongs to the graph if at least one of the variables in the clique is contained

in the previous nodes in the ordering.

The factorisation of jpd in this case is based on ordered junction graph, that, not being a

junction tree, does not guarantee the accuracy of the distribution encoded in the structure.

General steps for parameter learning and sampling using a junction graph approach are

presented below. It is assumed that the structure learning is done using a statistical

independence test with chi-square statistic.

1. Refine the structure of the network: If the found network structure is dense,

i.e., if there is a large number of edges to a single node, the structure should be

refined by reducing the number of edges to a node. One of the ways to do this is by

allowing to a node only r number of edges having best chi-square values. However,

there is a trade off between accuracy verses simplicity. i.e., the edges needed to

accurately model the interaction may be greater than r. Therefore, determining

accurate r may be problematic.

49



2. Find all maximal cliques in the graph and calculate their weight: The

weight of a clique is the product of the chi-square value of all edges in that clique.

There are different algorithms that can be used to find the maximal cliques. In

Santana (2003b) Born and Kerbosch algorithm (Born & Kerbosch, 1973) has been

used.

3. Construct an ordered junction graph: It can be done by first ordering the

maximal cliques by their weights, then choosing a clique with maximal weight as the

root. The ordered junction graph is then populated by adding one clique at a time

to the graph. The clique to be added should be chosen such that among remaining

of the cliques, the added clique has the maximum number of overlapping variables

to one of the already added base nodes of the graph.

4. Construct a junction tree from the ordered junction graph: This is done by

removing any cycles contained by the ordered junction graph. Therefore constructed

junction tree may not cover all the dependency covered by the ordered junction graph

(Santana, 2003b).

5. Calculate probabilities and sample: Using (3.9), calculate the mar-

ginal/conditional probabilities as factorised by the junction tree and sample them

to generate child population.

3.3.2.3 Kikuchi approximation approach

The Kikuchi approximation approach (Kikuchi, 1951) (also known as messy invalid fac-

torisation) further extends the representation capability of the factorisation based on junc-

tion graph. It has been used in Markov Network EDA (MN-EDA) proposed by (Santana,

2003b, 2005).

The Kikuchi approximation is a generalisation of well-known Bethe approximation in sta-

tistical physics (Bethe, 1935; Yedidia et al., 2001, 2002, 2005). Kikuchi approximation

approach is based on the idea of finding an appropriate set of marginals from which to

obtain an approximation of the distribution. Here, a structure G is decomposed into a

50



sets of regions < = {<0,<1, ...,<s} where each <i ∈ < is a set of cliques. A set <i contains

the cliques of same order, and for each i the order is different. Each region (clique) R ∈ <i

has a counting number cR. Given the set of region <i, the counting number cR of each

region R ∈ <i can be calculated as follows:

cR = 1−
∑
P

cP
... R ⊂ P (3.11)

Where, cP is the counting number of any region P that contains region R.

A regional decomposition of a graph G is said to be valid if the counting numbers for all

the regions consisting of a variable Xi (including singletion region consisting of only Xi)

sums up to 1 i.e: ∑
R∈<

Xi⊆R

cR = 1 (3.12)

Here, each R ∈ < is a region containing the variable Xi.

The approximation of distribution done from the factorisation of structure according to

valid region based decomposition is said to be acceptable. The key idea in this approach

is to find a valid regional decomposition of the structure.

To clarify the concept of regions and counting numbers, let us give an example: The

factorisation of the jpd for the junction tree of the graph in Figure 3.5 can be written as:

p(x) = p(x1, x2, x3)p(x4|x2, x3)p(x5|x1, x2)p(x6|x1, x3)p(x7|x3, x6)

= p(x1, x2, x3)
p(x4, x2, x3)p(x5, x1, x2)p(x6, x1, x3)p(x7, x3, x6)

p(x2, x3)p(x1, x2)p(x1, x3)p(x3, x6)

= p(x1, x2, x3)p(x4, x2, x3)p(x5, x1, x2)p(x6, x1, x3)

p(x7, x3, x6)p(x2, x3)−1p(x1, x2)−1p(x1, x3)−1p(x3, x6)−1 (3.13)

This structure, being a junction tree, can be validly decomposed into set of two regions,

<0 containing all the maximal cliques and <1 containing all cliques of order 2 involved in

51



the factorisation.

<0 = {x1, x2, x3}{x4, x2, x3}{x5, x1, x2}{x6, x1, x3}{x7, x3, x6}

<1 = {x2, x3}{x1, x2}{x1, x3}{x3, x6}

Applying (3.11) to our chosen regional decomposition, we get cR = 1 ∀ R ∈ <0. This

is because P for a maximal clique R ∈ <0 does not exist. In other words, the counting

number for all the maximal clique (all region in top level) is 1. Similarly, from (3.11), we

get cR = −1 ∀ R ∈ <1. For example: counting number for region {x2, x3}, from (3.11) is

c{x2,x3} = 1− (c{x1,x2,x3} + c{x4,x2,x3})

= 1− (1 + 1)

= −1

and therefore, we can write following for our chosen decomposition.

cR = 1 ∀ R ∈ <0

cR = −1 ∀ R ∈ <1

The Kikuchi approximation, k(x), of the jpd for a structure with valid decomposition is

k(x) =
∏

R∈<
p(R)cR (3.14)

And therefore, applying (3.14) to <, we get

p(<0) = p(x1, x2, x3)p(x4, x2, x3)p(x5, x1, x2)p(x6, x1, x3)p(x7, x3, x6)

p(<1) = p(x2, x3)p(x1, x2)p(x1, x3)p(x3, x6)

k(x) = p(<0)p(<1)−1

= p(x1, x2, x3)p(x4, x2, x3)p(x5, x1, x2)p(x6, x1, x3)

p(x7, x3, x6)p(x2, x3)−1p(x1, x2)−1p(x1, x3)−1p(x3, x6)−1

= p(x)

52



From this example, two things should be noted.

1. A regional decomposition of a structure based on a junction tree is a valid decom-

position.

2. The Kikuchi approximation of a structure that can be represented as a junction tree

is equal to the factorisation of the jpd based on the junction tree

This shows the equivalence of the Kikuchi approximation approach and the junction tree

approach.

However, the Kikuchi approximation is not limited to the junction tree structure and can

be further extended to any junction graph. The main idea here is to find the regional

decomposition of an structure such that it remains valid, i.e., satisfies (3.12). The two

step procedure for the algorithm to find a valid regional decomposition for a structure is

as follows:

1. Form the set <0 by taking one region for each maximal clique in the structure.

2. Form the subsequent sets <i containing all the sub cliques from the region in <i−1,

where each sub clique will have the order decreased to one level than that of cliques

in <i−1 and will have the counting number cR 6= 0. cR for any region R can be

calculated from (3.11)

For example: For the junction graph shown in the Figure 3.4, a valid regional decompo-

sition using above procedure will be as follows:

<0 = {x1, x2, x3}{x1, x2, x5}{x1, x3, x6}{x4, x5, x6}{x1, x5, x6}{x7, x8, x9, x10}

<1 = {x1, x2}{x1, x3}{x1, x5}{x1, x6}{x5, x6}

<2 = {x1}{x5}{x6}

Here <0 contains all maximal cliques, <1 contains all sub cliques in <0 having cR 6= 0 and

53



<2 contains all sub cliques in <1 having cR 6= 0.

Note, that the maximal clique {x7, x8, x9, x10} in <0 does not need to be decomposed

further as it is a fully connected disjoint clique and cannot be factorised further.

Applying (3.11) to the above decomposition we get:

cR = 1 ∀ R ∈ <0

cR = −1 ∀ R ∈ <1

cR = 1 ∀ R ∈ <2

And therefore the Kikuchi approximation k(x) applying (3.14) will be

p(<0) = p(x1, x2, x3)p(x1, x2, x5)p(x1, x3, x6)p(x2, x3, x4)p(x1, x5, x6)p(x7, x8, x9, x10)

p(<1) = p(x1, x2)p(x1, x3)p(x1, x5)p(x1, x6)p(x5, x6)

p(<2) = p(x1)p(x5)p(x6)

k(x) =
∏

R∈<
p(R)cR = p(<0)p(<1)−1p(<2)

Once k(x) is constructed, following sampling procedure is used by Santana (2005) to

sample a new solution.

1) Create a solution x = {x1, x2, ..., xn} at random.

2) Then for r iterations, randomly choose a position i ∈ n, approximate the marginal

probabilities p̃(xi) = k(xi) and sample to replace xi in x.

We denote k(x) having a variable xi = 1 as k(x|xi = 1). Then, the marginal probabilities

can be approximated as

p̃(xi = 1) = k(xi = 1) =
k(x|xi = 1)

k(x|xi = 0) + k(x|xi = 1)

54



Similarly,

p̃(xi = 0) = k(xi = 0) =
k(x|xi = 0)

k(x|xi = 0) + k(x|xi = 1)

3) Return the resulting x as a new solution.

The above sampling procedure can be seen as a variant of Gibbs sampler (Geman &

Geman, 1987). Use of more sophisticated version of Gibbs sampler with a cooling schedule

in EDA can be found in (Shakya et al., 2005a,b). This will be discussed in more detail in

Chapter 6 and Chapter 7.

3.4 Summary

PGM provides an effective and elegant tool to represent a factorisation for a distribution.

Wide range of EDA uses the PGM approach to estimate and sample the distribution. In

this chapter we have described PGM in context of EDAs. The objective was twofold: 1)

to review the use of PGM in EDAs, and 2) to form the basis for the remaining part of the

thesis by introducing the concepts associated with the undirected PGM.

We started by introducing the basic components of PGM. We then categorised PGM into

two groups according to the structure they use: 1) Directed PGM (Bayesian networks) and

2) Undirected PGM (Markov Random Fields). We reviewed different structure learning

and parameter learning techniques for both PGMs. We also reviewed different sampling

techniques to sample from a PGM.

As the estimation of distribution technique proposed in this thesis is based on MRF,

special focus was given to review three different techniques to learn and sample the MRFs.

They were: junction tree approach, junction graph approach and Kikuchi approximation

approach. In the remaining part of this thesis, we present our approach to estimation and

sampling of distribution in EDAs based on MRF.

55



Chapter 4

Fitness modelling approach to

estimating parameters in Markov

Random Fields

As we have stated in earlier chapters, the variation process in EDA involves estimating the

joint probability distribution (jpd), p(x), from the population of solutions and sampling it

to generate the child population. Many EDAs use Probabilistic Graphical Models (PGM)

for this task, as they provide an elegant and effective way to represent a jpd, p(x). Our

approach to EDA is inspired by using undirected PGM (Markov Random Field (MRF))

to estimate and sample p(x). The novelty of our approach, in comparison to other EDAs,

is that we build a model of fitness function to approximate the parameters in MRF.

Therefore, we call this approach the fitness modelling approach to estimating the MRF.

The aim of this chapter is to present the proposed fitness modelling approach. Note that,

we do not focus on the structure learning part of the MRF 1, instead our focus will be on

parameter learning and sampling.

The rest of the chapter is organised as follows. We start by presenting the concept of
1see chapter 3 for two different methods to learn the structure for the MRF

56



equivalence relationship between Markov Random Field and the Gibbs distribution. We

then use this relationship to derive a model of the fitness function that relates the energy

function of a Gibbs distribution with the fitness of a solution. We then present how to

define energy for different structure of MRF. And finally, we present the way to learn the

parameters of the MRF using derived model of fitness function.

4.1 Factorising MRF as a Gibbs distribution

Equation (3.5) in previous chapter defines jpd, p(x), for any MRF as the product of

positive potential functions ψi(ci), over the cliques Ci, in the structure of the model G. In

this section, we describe its equivalence in terms of Gibbs distribution.

4.1.1 Gibbs distribution

A Gibbs distribution over a set of random variables X has the following form

p(x) =
e−U(x)/T

Z
(4.1)

where,

Z =
∑
y∈Ω

e−U(y)/T (4.2)

is a normalising constant, Ω is the set of all possible solutions, T is a parameter of the

distribution known as the temperature and U(x) (or more precisely U(X = x)) is known

as the energy of the distribution. Given an undirected graph, G, on X, U(x) is defined as

a sum of potential functions over the cliques, Ci, in G.

U(x) =
m∑

i=1

ui(ci) (4.3)

Therefore, (4.1) can also be written as

p(x) =
e−

∑m

i=1
ui(ci)/T

Z
(4.4)

57



Here, ui(ci) (or more precisely ui(Ci = ci)) is a potential function defined over a clique

Ci. Note that the relationship between ψi(ci) in (3.5) and ui(ci) in (4.4) is defined as

ψi(ci) = e−ui(ci)/T (4.5)

We use C = {C1, C2, .., Cm} to denote the set of all considered clique in U(x). As stated

in previous chapter, the set C can consist of all possible cliques in G, i.e., all maximal

cliques, their sub cliques including singleton cliques. However, it is always possible to

consider only the maximal cliques in C and define the energy U(x).

Temperature, T , has a very important role in Gibbs distribution. It controls the sharpness

of the jpd. i.e. when the temperature is high, all configurations of X tends to be equally

distributed. Conversely, near the zero temperature, the jpd concentrates around the global

energy minima.

4.1.2 MRF-Gibbs equivalence

A jpd for any MRF on X obeys following three conditions:

1. p(x)− > (0, 1), Probability of each x lies between 0 and 1

2. p(x) > 0, Positivity condition

3.
∑

x p(x) = 1 Sum over probability of all possible x is 1

In addition, an MRF also follows a fourth condition: its local Markov property 2, which

states that, a variable Xi is conditionally independent of rest of the variables in X given

its neighbouring variables Ni (Li, 1995; Besag, 1974). In terms of probability it can be

written as

p(xi|x− {xi}) = p(xi|Ni)
2Local Markov property has been also described in Chapter 3

58



We can also define a Gibbs Random Field over X, which is characterised by its global

property: the Gibbs distribution.

Definition 4.1.1 (Gibbs Random field) A set of random variables X with neighbour-

hood system N is said to be Gibbs Random Field (GRF), if and only if they obey a Gibbs

distribution.

The Hammersley-Clifford theorem (Hammersley & Clifford, 1971) then establishes the

equivalence between the local Markov property of MRF and global Gibbs property of

GRF.

Theorem 4.1.1 (The Hammersley-Clifford theorem) Any set of random variables

X with a neighbourhood system N is an MRF if and only if X is also a GRF on N

Proof. can be found in (Besag, 1974).

In another words, Hammersley-Clifford theorem states that a jpd for any MRF can be

equivalently specified as a Gibbs distribution (4.1). The practical value of the theorem

is that, the behaviour of a system using Gibbs distribution completely depends on the

chosen form of potential functions, ui(ci), and the temperature, T . These parameters can

be varied in order to achieve desired system behaviour. We exploit this property of Gibbs

distribution to estimate and sample the MRF in EDAs.

4.2 Using fitness to model the energy for the Gibbs distri-

bution

This section is based on an early work of Brown et al. (2002) on use of MRF to model

the GA fitness function, where they derive the equivalence relationship between energy of

Gibbs distribution U(x) and the fitness f(x) of the solution.

59



Assuming that the probability of a solution is proportional to its fitness, the jpd, p(x),

can be modelled in terms of fitness as

p(x) =
f(x)
Z

(4.6)

Where, Z =
∑

y∈Ω f(y) is the partition function and Ω is the set of all possible solutions.

For such p(x), we have

1. p(x)− > [0, 1], Probability of each x lies between 0 and 1

2. p(x) > 0, Positivity condition: assumes f(x) > 0. This can be maintained

by mapping f(x).

3.
∑

x∈Ω p(x) = 1, Sum over probability of all solution is 1

Now, from (4.1) and (4.6), we can deduce following equivalence of jpd for MRF in terms

of fitness function.

p(x) =
e−U(x)/T∑

y∈Ω e
−U(y)/T

≡ f(x)∑
y∈Ω f(y)

(4.7)

From which, in Brown et al. (2002), following relationship between fitness and the energy

is deduced.

−ln(f(x)) = U(x) (4.8)

For simplicity, here we assume T from (4.7) to be 1. (4.8) defines the equivalence shown

in (4.7).

We refer to (4.8) as MRF Fitness Model (MFM). From (4.3), MFM can also be written

in terms of potential functions as:

−ln(f(x)) =
m∑

i=1

ui(ci) (4.9)

Energy, U(x), in MFM (4.8) gives the full specification of the jpd (4.1), so MFM can be

regarded as a probabilistic model of the fitness function. Also notice that, minimising

60



U(x) here is equivalent to maximising f(x). In subsequent sections, we show how MFM

is used to estimate the parameters for the MRF.

4.3 Defining energy in terms of potential functions

In general, the form of energy, U(x) in MFM, will model the different order of interaction

between variables in X. The form of energy, however, will depend on our chosen potential

functions over the cliques in the structure G. In this section we give several examples on

how we can numerically define potential functions for three different structure of MRF:

univariate, bivariate and multivariate.

4.3.1 Univariate structure

A univariate structure represents no interaction between variables in X. The graph G

will be an edge less graph (see Figure 2.10 in chapter 2). Therefore, the set of maximal

cliques, C, in G would consist of n singleton cliques Ci = {Xi}. For each clique, Ci, we

can associate a potential function as follows:

ui(xi) = αixi (4.10)

From (4.8) the MFM can then be written as:

−ln(f(x)) = U(x) = α1x1 + α2x2 + ...+ αnxn (4.11)

In terms of jpd (4.1), it can also be written as

p(x) =
e−

∑n

i=1
αixi

Z
(4.12)

where,

Z =
∑
x∈Ω

e−
∑n

i=1
αixi (4.13)

61



Here, αi is the parameter associated with each clique {Xi}. αi being the only unknown

parameter of the potential function (4.10), completely specifies the U(x) and therefore

completely specifies the Gibbs distribution (4.12). Therefore, they are also known as

MRF parameters (Li, 1995). We use θ to refer to vector of all MRF parameters in the

model. For univariate case, the vector θ = α = {α1, α2, ..., αn}. In terms of MFM, (4.8),

an MRF parameter measures the effect that the interaction between variables in a clique

have on the fitness of the solution, f(x). Obviously, in univariate case (4.11), αi measures

the effect of a single variable, Xi, on fitness.

4.3.2 Bivariate structure

Figure 4.1: An undirected graph showing a chain model of interaction between 4 variables

The bivariate structure represents the pair-wise interaction between variables. For example

in Figure 4.1, a bivariate structure of a chain formation on four random variable is shown.

The set of maximal cliques, C, in this case, contains four cliques: C1 = {X1, X2}, C2 =

{X2, X3}, C3 = {X3, X4} and C4 = {X4, X1}. In general, for any bivariate clique Ci =

{Xi, Xj}, we can define the potential function as:

uij(xi, xj) = βijxixj (4.14)

The MFM, can then be written as:

−ln(f(x)) = U(x) = β12x1x2 + β23x2x3 + β34x3x4 + β41x4x1 (4.15)

In general, MFM for a chain graph with n nodes and with above defined potential function

will be

−ln(f(x)) = U(x) = β12x1x2 + β23x2x3 + ...+ βn1xnx1 (4.16)

62



In terms of jpd, it can also be written as

p(x) =
e−

∑n

i=1
βi(i+1)xixi+1

Z
(4.17)

where, i+ 1 = 1 if i = n.

The MRF parameters, βi(i+1), in this case represents the combined effect of interaction

between two variables Xi and Xi+1.

Let us define two types of MFM.

Definition 4.3.1 (Minimal MFM) We define a Minimal MFM as the MFM where the

potential functions in U(x) are defined on all the maximal cliques and not on any of their

sub-cliques.

Definition 4.3.2 (Complete MFM) We define Complete MFM as MFM where the po-

tential functions in U(x) are defined on all the maximal cliques, their sub-cliques including

singleton cliques.

Equation (4.15) is an example of a minimal MFM for the chain graph shown in Figure

4.1.

Now, let us define the complete MFM for the same graph. In order to do so, we need to

further define the potential functions for all sub-cliques in G. In Figure 4.1, there are all

together n singleton sub-cliques {Xi} in G. For each {Xi}, we define potential function

as

ui(xi) = αixi (4.18)

Adding this to (4.16), we get the following formulation for MFM

−ln(f(x)) = U(x) =
n∑

i=1

αixi + βi(i+1)xixi+1 (4.19)

where, i+ 1 = 1, if i = n. Here, the vector of MRF parameters θ will consist of two sets:

63



α and β. Equation (4.19) is an example of a complete MFM.

4.3.3 Multivariate structure

The multivariate structure represents the interactions of order more than 2. Obviously the

MFM for such structure will be more complex than the one for univariate and bivariate

structure.

Figure 4.2: An undirected graphical network showing a multivariate model of dependency
between 5 variables

As an example, in Figure 4.2, a structure of an MRF on 5 random variables with interac-

tions of order up to 3 is shown. The MFM can then be written as

−ln(f(x)) = U(x) = α1x1 + α2x2 + α3x3 + α4x4 + α5x5 +

β14x1x4 + β23x2x3 + β24x2x4 + β34x3x4 +

γ234x2x3x4

(4.20)

Here, αixi, βijxixj and γijkxixjxk are the potential fiunctions associated with cliques of

order 1, 2 and 3 respectively. Therefore, the vector of MRF parameters, θ = {α, β, γ}.

Equation (4.20) is a complete MFM for Figure 4.2. However, there may be other simplified

MFM (for e.g. a minimal MFM) that could be similarly defined. In this thesis we will

only consider either minimal or complete MFM.

64



4.4 Estimating the parameters of MRF

Once we define the potential function for the given structure of MRF, next step is to

estimate the parameters of the MRF, θ. In EDAs, we can do so by fitting the derived

MFM to a dataset (i.e. set of solution), D. Let us explain it in more detail.

Each solution in a given population provides an equation satisfying the MFM with defined

potential functions, where MRF parameters will be the unknown part. Applying this to a

set of solution D consisting of N solutions therefore allow us to estimate MRF parameters,

θ, by solving the system of equations:

F = AθT (4.21)

Here, F is the column vector containing − ln(f(x)) of all solutions in D, θ, is the vector

of all MRF parameters 3, and A is the matrix of values in D.

To clarify this, let us give an example. For simplicity, we assume the univariate structure

for an MRF with clique potential function defined as ui(ci) = αixi. The jpd, p(x), can

then be defined as (4.12) and corresponding univariate MFM can be defined as

−ln(f(x)) = α1x1 + α2x2 + ...+ αnxn (4.22)

A solution, x, in the set D will then provide an equation satisfying (4.22). Where, left

hand side of the equation will be the −ln(f(x)) and the right hand side will be the sum

over the product of each xi ∈ x with the MRF parameter αi. αi is the unknown part

of the equation. Note that, for mathematical reason, {-1,1} should be used as the values

for xi rather than {0, 1}. This ensures the arithmetical symmetry between possible values

of xi and is a standard practice in MRF modelling techniques. Applying (4.22) to the

whole set, D, therefore allows us to estimate MRF parameters, α, by solving the system

of equations:

F = AαT (4.23)

3θT is the transpose of vector θ to make it a column vector

65



Here, F is the N -dimensional column vector containing − ln(f(x)) for the set of so-

lutions in D. A is the N × n dimensional matrix of allele values in the set D,

θ = α = (α1, α2, . . . , αn) is the vector of MRF parameters. Depending on the relationship

between N and n, the system will be under-, over-, or precisely-specified. A standard

least square fitting algorithm can be used to give a estimation of the αi. We state one of

the most stable algorithm for this purpose known as Singular Value Decomposition (SVD)

(Press et al., 1993). SVD can give useful results even when the system of linear equations

are under-specified or over-specified.

Above example can be similarly extended for bivariate and multivariate structures. The

size of the matrix A will depend on the number of MRF parameters in θ and the size of

the set D. For example, if we consider a complete MFM for the chain model (Figure 4.1),

the size of the matrix will be N × s, where s, the length of θ, is 2n as θ will contain both

α = {α1, α2, . . . , αn} and β = {β12, β23, . . . , βn1}.

Adding a constant in the system of equations

While solving the system of equations, it is suggested to add a constant (also known as

the intercept) to the equation. It is a standard approach in statistics and widely used for

doing regression analysis. In this case, the system of linear equation will have following

form:

F = AθT + C (4.24)

where, C is known as the intercept of the equation

Figure 4.3 shows a set of solutions, D, and the corresponding set of linear equations for

univariate MFM (4.22) that includes the constant C.

The least square fitting will then use the intercept to balance the error in fitting the

system of equations resulting in better estimation of MRF parameters. Figure 4.4 shows a

graphical illustration of least square fitting with a constant and without a constant. Here,

each point represents an equation in two dimensional spaces and the straight line between

66



Figure 4.3: A set of solutions D and the corresponding set of linear equations including
the intercept C for univariate MFM

them represents the fitted model. It can be noticed that the use of constant significantly

reduces the error in fitting and therefore improves the quality of the MRF parameters.

Figure 4.4: Graphical illustration of the effect of adding a constant while solving a system
of linear equations

For all the experiments presented in this thesis, intercept has been used while solving the

system of equations.

67



4.5 Summary

Our approach to EDAs is inspired by using Markov Random Field (MRF) to estimate

and sample the jpd, p(x). In chapter 3, we reviewed three approaches to estimating and

sampling p(x) based on MRF: junction tree, junction graph and Kikuchi approximation.

In this chapter, we have presented the fitness modelling approach to estimating the MRF

in EDAs. The novelty, here is that we model the fitness function to learn the parameters

for the MRF.

We started by presenting the concept of equivalence relationship between MRF and the

Gibbs distribution. We used this relationship to propose a model of the fitness function

which we call MRF fitness model (MFM). MFM defines relationship between the energy,

U(x), of the Gibbs distribution and the fitness, f(x), of the solution. We then presented the

way to represent different MRF structure in terms of potential function in U(x) and finally

presented the way to learn the MRF parameters by using MFM. As MRF parameters

completely defines the jpd, p(x), it can be sampled to generate the instances of the X. In

the subsequent chapters, we will propose several different techniques to sample the MRF.

68



Chapter 5

DEUM algorithm and a

probability vector approach to

sampling

In this chapter, we present a general framework of an EDA, which we call Distribution

Estimation Using Markov Random Field (DEUM). DEUM uses MRF approach to estimate

and sample the probability distribution. In chapter 4, we have proposed a fitness modelling

approach to estimate the MRF in EDAs. Here, we introduce a probability vector approach

to sample MRF. We also present a DEUM algorithm with probability vector approach to

sampling. For simplicity, we use univariate model of probability distribution. This allows

us to completely eliminate the structure learning task.

The chapter is structured as follows. We start by introducing a general framework for

DEUM algorithm. We then describe how we can use the probability vector approach to

sample MRF. We then present the workflow of DEUM with probability vector approach

to sampling, followed by the experimental results. Finally we conclude this chapter by

presenting some discussion on the experimental results.

69



5.1 DEUM: A general framework

The workflow of Distribution Estimation using Markov Random Field (DEUM) is similar

to that of other EDAs. It starts by initialising a population of solution, P , then selects

a set of promising solutions D from P . The fitness modelling approach is then used to

estimate the MRF parameters from D, which is then sampled to generate new solutions.

Figure 5.1 shows the general workflow of DEUM.

Distribution Estimation using MRF (DEUM)

1. Generate parent population P

2. Select a set of solutions D from P

3. Build a MFM and fit it to D to estimate a MRF.

4. Sample MRF to generate new solutions

5. If termination criteria is not satisfied, replace parent with new solutions and go to
step 2

Figure 5.1: The pseudo-code of the Distribution Estimation Using MRF (DEUM) algo-
rithm

An important property of DEUM, which distinguishes it from other EDAs is that, it builds

a model of fitness function, (MFM), to estimate the distribution. Whereas other EDAs

only builds a model of good solutions for this purpose. As we shall show in subsequent part

of this thesis, this property of DEUM has an important implication to their performance.

In the remaining part of this thesis, we propose several variants of DEUM using different

techniques to sample MRF.

70



5.2 Using probability vector for maintaining and sampling

the distribution

The concept of using a probability vector for sampling is not new in EDAs. In chapter

2, we reviewed PBIL (Baluja, 1994), where a vector of probabilities p = {p1, p2, ..., pn} is

initialised, updated and sampled through out the iteration of the algorithm (see chapter

2, Figure 2.11 for more on PBIL workflow). Each pi ∈ p is a probability of xi ∈ x

to be 1. Each pi has the value of 0.5 in the initialisation stage. In each iteration, p

is sampled to generate solutions for the new population. Then, depending upon the

frequency distribution of 1 or 0 in selected set D, pi is increased or decrease. The compact

Genetic Algorithm (cGA) also implements the probability vector approach to sampling

(see chapter 2, Figure 2.13 for cGA workflow).

Here, we present a similar approach based on maintaining and sampling a probability

vector, p. Although, the general idea behind our approach is similar to that used in PBIL

and cGA, it has its differences. Instead of using the frequency distribution of 0 or 1 in D,

we use the MRF parameters θ to update p. Unless and otherwise stated, we assume that

the optimisation criteria for any EDA is to maximise the fitness f(x). Also the binary

representation {0, 1} for xi is replaced by {-1, 1}.

Let us recall the MFM with univariate model of energy U(x) (4.22) derived in previous

chapter:

−ln(f(x)) = U(x) = α1x1 + α2x2 + ...+ αnxn

Here, each αixi is a potential function defined over clique {Xi}. Each αi can be seen

as the contribution measurer of variable Xi towards the U(x). As stated earlier, here,

minimising U(x) would be equivalent to maximising f(x). In order to minimise U(x),

each contribution αixi should be minimised. Now, once we approximate the αi, we can

then use it to predict the value for corresponding xi that minimises the total contribution

αixi. More precisely, a negative αi indicates that xi is more likely to be 1, so that the

total contribution αixi will be negative. Similarly, for same reason, a positive αi indicates

71



that xi is more likely to be -1.

This information would allow us to generate a chromosome that would be an optimal

chromosome for the current generation. However, most of the time, current optimal chro-

mosome does not imply the global optimum. There are two main reasons for this. Firstly,

there may simply not be enough information in a population to predict the global optimal

chromosome at once. Secondly, the problem domain considered may not have the exact

(or similar) interaction between variables as assumed by the probabilistic model. There-

fore, a better way to use this information is to update the probability vector towards the

direction pointed by MRF parameters and sample them to generate next population.

We use following updating rule to update pi ∈ p towards the direction pointed by αi

For i = 1..n do

If αi < 0 then pi = pi(1− λ) + λ;

If αi > 0 then pi = pi(1− λ); (5.1)

Here, λ is a learning rate parameter, similar to the one introduced in PBIL, and takes

a value between 0 and 1. In (5.1), if αi is negative, we increase the probability, pi,

of corresponding xi being 1 in the next generation towards the fixed learning rate λ.

Similarly, if αi is positive, we decrease pi. Sampling such pi, then allows us to generate

more of the xi with the value pointed by αi in next generation. This, in turn, allows us

to minimise U(x) as generation progresses. Notice that when λ = 1, pi tends to its limit,

{0, 1}, depending on the sign of αi.

This forms the basis for a DEUM algorithm that uses probability vector approach to

sampling. Notice that DEUM with probability vector approach to sampling was first

introduced in (Shakya et al., 2004b) as an initial DEUM algorithm. Here we refer to it as

DEUMpv.

72



5.3 DEUMpv: A DEUM with probability vector approach

to sampling

The workflow of the DEUM with probability vector approach to sampling (DEUMpv) is

similar to that of other univariate EDAs such as PBIL, UMDA and cGA. It begins by

initialising a probability vector, p = {p1, p2, .., pn}, where each pi is assigned the value

0.5. p is then sampled to generate the parent population P with M solutions. The set

D consisting of N best solutions is then selected from P . MRF parameters are then

calculated by fitting the univariate MFM (4.22) to D. Fitting is done by solving the

system of linear equation (4.24). Singular Value Decomposition (SVD) (Press et al., 1993)

technique is used to solve the system of linear equations. The MRF parameters, αi, are

then used to update the probability vector p, which is then sampled M times to create a

new population. This process continues until termination criteria are satisfied. Pseudo-

code for DEUMpv is shown in Figure 5.2.

DEUM with probability vector approach to sampling (DEUMpv)

1. Initialise probability vector p = {p1, p2, ..., pn} by assigning 0.5 to each pi

2. Sample p to generate parent population P consisting of M solutions

3. Select a set D from P consisting of N fittest solutions, where N ≤M

4. Estimate MRF parameters α = {α1, α2, ..., αn} by applying univariate MFM on D
and solving the system of linear equations

5. Use α to update p using following updating rule
For i = 1..n do

If αi < 0 then pi = pi(1− λ) + λ;
If αi > 0 then pi = pi(1− λ);

6. Go to step 2 until termination criteria satisfies

Figure 5.2: The pseudo-code of DEUM with probability vector approach to sampling
(DEUMpv) algorithm

The learning rate, λ, (shown in Figure 5.2) has a direct effect on the convergence speed of

DEUMpv where convergence is slow if λ is closer to 0 and convergence is fast if λ is closer

73



to 1. As stated in the previous section, to calculate α the binary representation {0, 1} of

the solution is replaced by {-1, 1}.

Unlike the updating rules used in UMDA, PBIL and cGA, the DEUMpv updating rule

uses the sign of the MRF parameter to direct the search towards favouring a particular

value of xi. As stated earlier, this is achieved by updating the probability vector pi in

the appropriate direction by a fixed learning rate λ. Note that in the extreme case when

selection size N = 1, the DEUMpv updating rule will always have an identical effect to the

PBIL updating rule. This is because, in order to make the
∑n

i=1 αixi negative, solving a

system of equation consisting of a single solution using SVD will always result in negative

αi for xi = 1 and positive αi for xi = −1. This will make sure that each individual

contribution αixi in (4.22) will be negative and therefore the total contribution will also

be negative, i.e., −ln(f(x)). The DEUMpv updating rule with such α will have identical

effect to the PBIL updating rule on single solution.

Also, because updating rule (5.1) in DEUMpv is aimed at minimising U(x) to maximise

f(x), it is essential to maintain the negative relationship between fitness and energy while

fitting MFM to D. In other words, the −ln(f(x)) for all x in D should be ≤ 0. This is

easily achieved on the problems we considered and held true on all runs of each of the

experiments presented in the next section. For problems where −ln(f(x)) ≤ 0 is likely to

occur in D,i.e., if f(x) is between 0 and 1, DEUMpv should be applied by adding 2 to the

f(x) for all x in D, while building the system of linear equations.

5.4 Experiments and Results

The aim of our experiment is to test if the fitness modelling approach to estimating the

distribution used in DEUMpv has an advantage over the traditional frequency counting ap-

proach used in other univariate EDAs. Therefore, we compare the performance of DEUMpv

with the performance of other univariate EDAs in different optimisation problems. We

also find it informative to compare DEUMpv with a GA. We show that, for the problems

we have tested, the performance (in term of number of fitness evaluation taken to find

74



the solution) of DEUMpv is significantly better than the performance of other univariate

EDAs and a GA.

5.4.1 Methodology

As a test set, we choose three problems that have been widely used in EDA community

to evaluate the performance of different EDAs. They are: Onemax problem (Mühlenbein

& Paaß, 1996), Schaffer f6 Function (Davis, 1991), and trap function of order 5 (Pe-

likan, 2002). We empirically determined the parameters for DEUMpv. For the rest of

the algorithms, we used parameter settings from the literature or empirically determined

parameters depending on which proved best for particular problems. The number of fit-

ness evaluation taken by an algorithm to find the optimum solution has been taken as the

measure of performance.

For Onemax problem, we perform the scalability analysis, which shows how an algorithm

scales up (in terms of number of fitness evaluation) to a particular problem as the problem

size grows. For Schaffer f6 Function, we use Run Length Distribution (RLD) curve (Hoos

& Stutzle, 1999) to show the performance of each algorithm. RLD curve shows, for each

algorithm, the cumulative percentage of successful runs that has been terminated in a

certain number of fitness evaluation. RLD is a powerful technique used to understand the

dynamic behaviour that is usually observed in stochastic algorithms like GAs and EDAs.

For example, Figure 5.5 shows that, with DEUMpv, 50% of runs found the optimum within

1700 function evaluations in comparison to 2200 function evaluations of PBIL.

In the subsequent chapters of this thesis, we will frequently use both scalability test and

RLD in order to compare the performance of different algorithms.

75



5.4.2 Test problems

Onemax Problem

This is a simple linear problem which can be defined as follows.

fom(x) =
n∑

i=1

xi (5.2)

Where, xi ∈ {0, 1} is the value of ith variable of set x and the fitness is the sum of all bits

in x. Therefore, the global optimum is located at the point (1,1,.....,1). This problem has

the univaiate structure and therefore is an ideal problem for univariate EDAs. It has been

shown that UMDA works very well on this problem even with a very small selection size

(Mühlenbein & Paaß, 1996).

We compare performance of DEUMpv against a simple GA with uniform crossover (GA

(uniform)) and two variants of UMDA: UMDA with selection size N = 0.5M (UMDA

(0.5)) and UMDA with selection size N = 0.3M (UMDA (0.3)). 100 runs of each algorithm

were executed for a series of Onemax problems of size ranging between 30 and 180. The

number of fitness evaluations taken to find the optimum solution was recorded for each

run. Uniform crossover with exchange probability of 0.5 was used for the GA (uniform),

crossover was applied all the time and mutation was not applied. Population size M

ranged from 40 -100 for GA (uniform), 50 - 170 for both variants of UMDA and was set

to be 1.5n for DEUMpv (45 - 270). Learning rate λ was set to 1 for DEUMpv. Truncation

selection with selection size N = 0.5M was used for GA (uniform). For DEUMpv whole

population was selected, i.e., D = P was used. No elitism was used and new populations

were generated with complete replacement.

Figure 5.3 shows the scalability of each algorithm over the range of Onemax problems.

The success ratio of converging to the optimum was 100% for DEUMpv, 99% for UMDA

(0.5), 98% for UMDA (0.3) and 100% for GA (uniform). GA with one point crossover

is not shown in the experiment as its performance was much worse than the algorithms

shown in Figure 5.3.

76



Figure 5.3: Average number of fitness evaluations for 30 to 180 sized Onemax problem
where the population size was 40 -100 for GA (uniform), 50 - 170 for both variant of UMDA
and 1.5n for DEUMpv which is 45 - 270. λ for DEUMpv was 1

As we can see from Figure 5.3, GA (uniform) as expected has a performance comparable

to UMDA (0.5). UMDA (0.3) performs better than both GA (uniform) and UMDA

(0.5). Finally, DEUMpv has the performance significantly better than that of rest of

the algorithms and equals to about 1.5n fitness evaluations for all n. We found that

MRF parameters, α, estimated from the initial population of 1.5n solutions accurately

predicts the optimum solution. Therefore, by setting the learning rate to λ = 1, i.e, by

converging each element of probability vector, pi, to their extreme, DEUMpv was able to

find the solution in single generation. In other words, the first solution sampled from such

probability vector was the optimum solution.

Schaffer f6 function

The Schaffer f6 function, described in (Davis, 1991), is an interesting function for optimi-

sation, which has been frequently used to evaluate the performance of GAs. A simplified

version of it is presented below.

f6(x) = 1 +
(

cos(x)
1 + 0.001x2

)
(5.3)

77



Where, −300 ≤ x ≤ 300.

Figure 5.4: Fitness landscape for simplified version of Schaffer f6 function

An interesting feature of this function is that it has lots of local optima but a single global

optimal solution (Figure 5.4). So a hill climbing algorithm will rapidly become trapped in

one of the local optima. The optimal solution is f6(x) = 2 when x = 0.

We performed experiments with two different 20-bit representations of the f6 function.

Firstly with a simple binary representation, and secondly with a gray coded representation.

Each algorithm with fixed parameter settings was run for a total of 1000 runs. For each

run the number of evaluations taken to find the optimum solution was recorded.

For the binary representation, the parameter settings were as follows. For UMDA, the

population size was 400, selection size was N = 0.3M and 50% elitism was used. For GA

(uniform), population size was 200 and truncation selection with selection size N = 0.5M

was used. Crossover was applied all the time, mutation was set to 0.01 and 50% elitism

was used. For PBIL and DEUMpv, identical parameter settings were used: population size

was 160, learning rate λ was set to 0.15, selection size N = 2 was used. Mutation shift

was not applied in PBIL. Within the limits of representational accuracy, the termination

criterion was effectively f(x) > 1.99999988079071.

78



Figure 5.5: Experimental results in the form of RLD showing, for each algorithm running
on the 20-bit binary representation of Schaffer f6 function, the cumulative percentage of
successful runs that terminated within a certain number of function evaluations

For the gray code representation, the parameter settings were as follows. For GA (uni-

form), population size was 300 and truncation selection with selection size N = 0.5M was

used. Crossover was applied all the time, mutation was set to 0.01 and 50% elitism was

used. For PBIL and DEUMpv, identical parameter settings were used: population size

was 500, learning rate λ was set to 0.1, selection size N = 2 was used. Mutation shift was

not applied in PBIL.

Figure 5.6: Experimental results in the form of RLD showing, for each algorithm running
on the 20-bit gray code representation of Schaffer f6 function, the cumulative percentage of
successful runs that terminated within a certain number of function evaluations

The experimental results for binary representation in the form of RLD is shown in Figure

5.5. The experimental results for gray code representation in the form of RLD is shown

79



(a) N = 1 (b) N = 2

(c) N = 3

Figure 5.7: Experimental results in the form of RLD comparing DEUMpv and PBIL for
20-bit binary representation Schaffer f6 function. For both algorithms population size was
160, learning rate was 0.1 and selection size, N , was 1 for (a), 2 for (b) and 3 for (c).

in Figure 5.6. The result for UMDA is not shown in the Figure 5.6, as its performance

was much worst than other three algorithms. We can see that, for both binary and gray

representations, the performance of DEUMpv was better than other univariate EDAs.

As we stated earlier, the performance of DEUMpv was identical to the performance of

PBIL when selection size N was set to 1 (Figure 5.7a). The updating rule in this case

is effectively identical. However, as selection size increases, the performance of DEUMpv

exceeds that of PBIL (Figure 5.7b and 5.7c).

trap function of order 5

A Trap function of order k (Pelikan, 2002) can be defined as

ftrap,k(x) =
n/k∑
i=1

trapk(xbi,1 + ...+ xbi,k) (5.4)

80



Each block (xbi,1 + ... + xbi,k) gives a fitness which can be calculated through a general

trap function of order k

trapk(u) =

 fhigh, if u = k

flow − uflow
k−1 , otherwise

Where, u is the number of ones in the input block of k bits. The trap function of order

5 (Figure 5.8) is the instance of the general trap function where k = 5, fhigh = 5 and

flow = 4.

The important feature of a trap function is that the block of bits with u < k has decreasing

fitness as u increases and so misleads the algorithm away from the global optimum. The

purpose of this experiment is to show that DEUMpv, like other univariate EDAs and

GA with uniform crossover, is misled by a trap function because it cannot detect the

interaction between variables.

For GA (onepoint) crossover probability was 100%, mutation probability was 1%, popu-

lation size was 600 and 50% elitism was used. For all experiments, truncation selection

with N = 0.5M was used except that the single best selection was used for PBIL.

Experiments done with problem size n = 30 showed that none of GA (uniform), UMDA,

PBIL with learning λ = 0.1 or DEUMpv with different settings of λ could find the optimum

even using a population size of 15000. However a simple GA with one point crossover (GA

(onepoint)) could find the solution using average of 7500 fitness evaluations.

5.5 Discussion

Our experiments show that, for univariate problems, the use of MRF parameters instead

of the simple univariate marginal frequency provide significantly better performance in

terms of the number of function evaluations required by the algorithm to find the optimum

solution.

81



Figure 5.8: The trap function of order 5, where global optimum is in 11111 and local
optimum is in 00000. Any block of bits with u < 5 deceives algorithm to the local optimum
as u increases.

Our experiments with trap function of order 5 showed that DEUMpv, as we expect, has a

similar problem as other univariate EDAs, that is to converge to the local optimum. This

is obvious, because the univariate model of probability distribution considered in DEUMpv

cannot properly represent the deceptive nature of interaction between variables in the trap

function.

5.6 Summary

In this chapter we have presented a general framework of an EDA using MRF approach

to estimation of distribution, which we call Distribution Estimation using MRF (DEUM).

The motivation behind DEUM is to model the fitness function to learn the MRF parame-

ters. We have also presented a probability vector approach to sampling the MRF. Two

of the previously proposed EDAs, known as PBIL and cGA, also use probability vector

approach to sampling. However, our approach differs from the approach used in these two

algorithms, as, instead of using marginal frequency, we use MRF parameters to update

probability vector. We have also presented a DEUM algorithm that uses such approach

to sample the MRF. We called it DEUMpv.

Our experimental results show that, for most of the problems tested, the performance

82



of DEUMpv was better than that of other univariate EDAs. Specifically, for univariate

problems, such as Onemax, DEUMpv was able to find the optimum in a single generation.

It also did not require any explicit selection operator, such as truncation or tournament

selection, for Onemax optimisation. Ability to perform optimisation without using any

explicit selection operatures is an important property of DEUM algorithms, which also

plays a significant role in their performance. We will explain this property in detail in the

next chapter, where we also present another version of DEUM algorithm based on direct

sampling from the Gibbs distribution.

83



Chapter 6

DEUMd: direct sampling from

Gibbs distribution

In the previous chapter, we proposed DEUM as a general framework of an EDA us-

ing fitness modelling approach to estimating the MRF parameters. We also introduced

DEUMpv: a version of DEUM using probability vector approach to sampling the MRF.

In this chapter, we present a DEUM, which directly samples from the Gibbs distribution.

We call it the DEUM with direct sampling of Gibbs distribution (DEUMd). DEUMd has

been first introduced in (Shakya et al., 2005a,b).

The chapter is structured as follows. In next section we describe how to estimate marginals

from the Gibbs distribution. We then present the workflow of the DEUMd algorithm. This

will be followed by the experimental results on the performance of DEUMd on a range of

different optimisation problems. We then present the analysis of our experimental findings,

and also present the cost-benefit analysis of using the fitness approximation approach to

estimating MRF in EDAs. Finally, we conclude this chapter by presenting an interesting

property of DEUM algorithms, i.e., their ability to perform optimisation even without

using an explicit selection operator.

84



6.1 Finding marginals from the Gibbs distribution

Let us recall the model of distribution used by DEUMpv.

p(x) =
e−U(x)/T

Z
=
e−

∑n

i=1
αixi/T

Z
(6.1)

Where, Z =
∑

y∈Ω e
−U(y)/T is a normalising constant called partition function, Ω is a set

of all possible instances of X. T is a temperature constant and U(x) =
∑n

i=1 αixi is the

energy function defined as a sum of potential functions, αixi, over all Xi ∈ X.

We use x+ to denote x having a particular xi = +1, similarly, we use x− to denote x

having xi = −1. The probability that the variable in position i is equal to 1, p(xi = 1),

can then be written as

p(xi = 1) =
p(x+)

p(x+) + p(x−)
(6.2)

Substituting p(x) from (6.1) and cancelling the Z, we get

p(xi = 1) =
e−U(x+)/T

e−U(x+)/T + e−U(x−)/T
(6.3)

or,

p(xi = 1) =
1

1 + e(U(x+)−U(x−))/T
(6.4)

As U(x+) and U(x−) agree in all terms other than αixi, the common terms in both U(x+)

and U(x−) drop out and we get the following expression as the estimate of the marginal

probability for xi = 1:

p(xi = 1) =
1

1 + eβαi
(6.5)

where, β = 2/T .

Similarly, we can get following expression as the estimate of the marginal probability for

xi = −1:

p(xi = −1) =
1

1 + e−βαi
(6.6)

85



6.1.1 Role of temperature in sampling a Gibbs distribution

Temperature T has a very important role in Gibbs distribution. It controls the convergence

of the distribution. In equation (6.5), as T → 0, the value of β increases, and the value of

p(xi = 1) tends to limit depending on the αi. If αi > 0, then p(xi = 1) → 0 as T → 0.

Conversely, if αi < 0, then p(xi = 1) → 1 as T → 0. If αi = 0, then p(xi = 1) = 0.5

regardless of the value of T . Therefore, the αi are indicators of whether the allele value

at the position i should be 1 or −1. This indication becomes stronger as the temperature

is cooled towards zero.

This forms the basis for the proposed DEUMd, which combines the sampling of Gibbs

distribution with a cooling scheme. We reduce T , i.e., increase β, as the population

evolves, so the model becomes more exploitative rather than explorative as the evolution

progresses.

6.2 Workflow of DEUMd

DEUMd begins by initialising a population of solution P . Then the selection process takes

place where N best solution is selected from P . MRF parameters, α, are then calculated

by fitting the univariate MFM, (4.22), on the selected set of solution. This is achieved by

solving the system of linear equations, (4.24). The p(xi) is then calculated from equation

(6.5) and sampled to generate the child population. The child then replaces the parent,

P , and this process continues until termination criteria are satisfied.

The five-step procedure for DEUMd workflow is shown in Figure (6.1).

As described earlier, β has a direct effect on the convergence speed of DEUMd. As the

number of iterations, g, grows, the marginal probability, p(xi), gradually cools to either

0 or 1. However, depending upon the type of problem, different cooling rates may be

required. In particular, there is a trade-off between convergence speed of the algorithm

86



Distribution Estimation using MRF with direct sampling (DEUMd)

1. Generate an initial population, P , of size M .

2. Select set D from P consisting of N fittest solutions, where N ≤M .

3. Calculate the MRF parameters α = (α1, α2, . . . , αn) by fitting univariate MFM to
D.

4. Generate M new solutions using the following distribution:

p(x) =
e−

∑n

i=1
αixi/T

Z

where, p(xi = 1) = 1
1+eβαi

and p(xi = −1) = 1
1+e−βαi

. Here, β is defined as β = gτ
where, g is the number of the current iteration and τ > 0 is a cooling rate parameter
chosen by the user.

5. Replace P by the new population, and go to Step 2 until the termination criterion
is satisfied.

Figure 6.1: The pseudo-code of the Distribution Estimation Using MRF with direct sam-
pling (DEUMd) algorithm

and the exploration of the search space. Therefore, the cooling rate parameter, τ , has been

introduced. τ gives explicit control over the convergence speed of DEUMd. Decreasing τ

slows the cooling, resulting in better exploration of the search space. However, it also slows

the convergence of the algorithm. Increasing τ , on the other hand, makes the algorithm

converge faster. However, the exploration of the search space will be reduced.

6.2.1 Related works

Before going further and describe the experimental setups, we find it informative to de-

scribe some related works. The use of the temperature for EDAs has been first proposed in

Boltzmann Estimated Distribution Algorithm (BEDA) (Mühlenbein et al., 1999), where,

a Boltzmann selection has been used to estimate the Boltzmann distribution. Note that,

BEDA is a conceptual algorithm as requires sum over exponentially many terms to calcu-

late the distribution (Mühlenbein & Mahnig, 2001b). A cooling schedule for Boltzmann

selection for BEDA has been later proposed in Mühlenbein & Mahnig (2001b). This ap-

87



proach has strong similarities with our approach, however has its differences as well. In

BEDA, the fitness has been directly taken as the energy for the Boltzmann distribution,

however in DEUMd, a model of fitness function, MFM, is built and fitted to the population.

6.3 Experiments and Results

The aim of our experiment is to compare the performance of DEUMd to that of other

univariate EDAs. For this purpose, a range of optimisation problems from literature has

been chosen. Each of these problems has been used in the literature to evaluate different

EDAs (see (Baluja & Davies, 1997; Larrañaga et al., 1999; Mühlenbein & Mahnig, 1999b;

Pelikan, 2002; de la Ossa et al., 2004)). Some problems are known to be better solved by

EDAs and some by GAs. We compare the performance of DEUMd with that of PBIL and

UMDA. We also compare the performance of DEUMd with GA.

6.3.1 Methodology

Each algorithm was executed for a fixed number of runs and stopped if it matched one of

the following three criteria. 1) the optimal solution is found. 2) population converged. 3)

maximum number of fitness evaluations performed.

For the problems where optimum solution could be found, the number of fitness evalua-

tions needed by the algorithm was taken as a measure for performance evaluation. Run

Length Distribution (RLD)(Hoos & Stutzle, 1999) curves were plotted to measure the per-

formance. RLD shows, for each algorithm, the cumulative percentage of successful runs

that terminated within a certain number of function evaluations.

For the problems where the optimum was not known or could not be found, the algorithms

were evaluated by the average quality/fitness of solution they could find and the average

number of fitness evaluations taken to find it (Larrañaga et al., 1999; de la Ossa et al.,

2004). This is shown as a table (eg. see Table 6.4 ) where the average ± standard

88



deviation is shown in the first row for fitness and in the second row for the number of

fitness evaluation.

The following abbreviations are used hereafter for the parameters of the algorithms in-

volved in the experiments. They are, PS for population size M , SS for selection size

N , LR for learning rate, CR for cooling rate τ , CP for crossover probability, MP for

mutation probability and EL for number of elitist solution to be transferred to the child

population. For UMDA, PBIL and DEUMd, truncation selection was used, i.e. the best

N solutions were selected. For GA, different selection methods were tried for each of the

problem and the best performing method was chosen. The rest of the parameters for each

algorithm were chosen empirically.

6.3.2 Test problems

Onemax Problem

The Onemax problem, (5.2), described in previous chapter is an ideal problem for univari-

ate EDAs. We take the problem dimension for Onemax to be 180 so the optimum fitness

is 180. Each algorithm was executed for total of 1000 runs. The parameter setups for each

of the algorithm are shown in Table 6.1:

Table 6.1: Parameter setup for Onemax

PS SS LR CR CP MP EL
GA 100 - - - 1 0.0025 -

UMDA 180 60 1 - - - -
PBIL 40 10 0.3 - - - -

DEUMd 270 270 - 100000 - - -

For GA, the truncation selection and the uniform crossover were used. Notice that, a very

high cooling rate (CR) is given for the DEUMd. This is because, for Onemax problem,

given population size of 1.5n, MRF parameters, α, estimated from initial population was

accurate enough to predict the optimum. Therefore, in order to converge the marginals,

p(xi), to their limit towards the direction pointed by αi, the temperature had to be near

89



zero in initial generation, i.e, T− > 0 or equivalently β− > ∞. This is approximated by

giving a very high value for cooling rate, CR. The results for each algorithm in the form

of RLD curves are shown in Figure 6.2.

Figure 6.2: Experimental results in the form of RLD showing, for each algorithm running
on the 180 bit Onemax problem, the cumulative percentage of successful runs that terminated
within a certain number of function evaluations

We can see that, as expected, the performance of DEUMd, both in terms of fitness evalua-

tion and success rate was significantly better than that of other algorithms. For example,

Figure 6.2 shows that, with DEUMd 90% of the runs found solution within around 270

function evaluation in comparison to 20× 102, 28× 102 and 40× 102 fitness evaluation of

PBIL, UMDA and GA respectively.

Plateau problem

This problem was proposed in Mühlenbein (1994) and is used by (Larrañaga & Lozano,

2002) to evaluate the performance of EDAs. The individuals of this function consist of a

n-dimensional vector, such that n = m× 3 i.e. the genes are divided into groups of three.

The plateau function can be defined as:

fp(x) =
m∑

i=1

g(x3i−2, x3i−1, x3i)

90



where,

g(x1, x2, x3) =

 1 if x1 = 1 and x2 = 1 and x3 = 1

0 otherwise

The goal is to maximise the function fp. The global optimum is located at the point

(1,1,.....,1). We take the problem dimension n to be 180 so the optimum fitness is 60.

Each of the algorithms was executed for 1000 runs and the number of fitness evaluation

taken to find the optimum was recorded. The parameter setups are shown in Table 6.2.

Table 6.2: Parameter setup for Plateau

PS SS LR CR CP MP EL
GA 200 - - - 1 0.005 -

UMDA 200 100 - - - - -
PBIL 40 15 0.2 - - - -

DEUMd 100 20 - 6 - - -

For the GA, truncation selection and uniform crossover were used. The results in the form

of RLD are shown in Figure 6.3, which shows that for most of the runs the performance

of DEUMd, both in terms of fitness evaluation and success rate was better than that

of other algorithms. For example, with DEUMd 80% of the runs found solution within

around 33×102 fitness evaluation in comparison to 48×102, 57×102 and 100×102 fitness

evaluation of PBIL, UMDA and GA respectively.

Checkerboard problem

In Checkerboard problem (Baluja & Davies, 1997; Larrañaga & Lozano, 2002), a s × s

grid is given where each grid can take value 0 or 1. The goal is to create a checkerboard

pattern of 0’s and 1’s on the grid. i.e. each grid with a value 1 should be surrounded in

all four basic directions by a value of 0, and vice versa. The fitness function is the number

of bits with the correct neighbours. Let, x = [xij ]i,j=1,...s be the grid and δ(a, b) be the

91



Figure 6.3: Experimental results in the form of RLD showing, for each algorithm running
on the 180 bit Plateau problem, the cumulative percentage of successful runs that terminated
within a certain number of function evaluations

Kronecker delta function. Then the checkerboard function can be written as:

fcb(x) = 4(s− 2)2 −
s−1∑
i=2

s−1∑
j=2

{δ(xij , xi−1,j)+

δ(xij , xi+1,j) + δ(xij , xi,j−1) + δ(xij , xi,j+1)}

Figure 6.4: Experimental results in the form of RLD showing, for each algorithm running
on the 100 bit CheckerBoard problem, the cumulative percentage of successful runs that
terminated within a certain number of function evaluations

We follow the approach taken by Larrañaga & Lozano (2002); de la Ossa et al. (2004) and

92



use s = 10 so the dimension is 100. The optimum fitness in this case will be 256. Each

algorithm was run for total of 1000 runs. The parameter setups for each of the algorithm

are shown in Table 6.3:

Table 6.3: Parameter setup for Checkerboard

PS SS LR CR CP MP EL
GA 1024 - - - 0.6 0.01 2

UMDA 1024 500 - - - - -
PBIL 100 10 0.01 - - - -

DEUMd 100 10 - 0.4 - - -

For the GA, truncation selection and onepoint crossover were used. The results in the

form of RLD are shown in Figure 6.4. As we can see, the percentage of successful runs

was low (< 95%), therefore the mean and standard deviation for fitness and the number

of evaluation are also shown in Table 6.4.

Table 6.4: mean ± stdev of fitness and number of fitness evaluation for each algorithm on
Checkerboard problem

GA UMDA PBIL DEUMd

fitness 254.68 ± 233.79 ± 243.5 ± 254.1 ±
(4.39) (9.2) (8.7) (5.17)

evaluation 427702.2 ± 50228.2 ± 191476.8 ± 33994 ±
(1098959.3) (9127) (37866.95) (13966.75)

Figure 6.4 shows that the success rate for PBIL and UMDA was very poor, with 5% and

25% respectively, in comparison to over 90% of both DEUMd and GA. Figure also shows

that, with DEUMd, 90% of the runs found the optimum within 41× 103 fitness evaluation

in comparison to 350× 103 fitness evaluation of GA.

Schaffer f6 function

The Schaffer f6 function, described in Davis (1991), is an interesting function for optimi-

sation that has been frequently used to evaluate the performance of GAs. Let us recall

93



the simplified version of it from (5.3):

f6(x) = 1 +
(

cos(x)
1 + 0.001x2

)

where −300 ≤ x ≤ 300.

The optimal solution is f6(x) = 2 when x = 0. We performed experiments with a 20-

bit representation of the f6 function. Within the limits of representational accuracy, the

termination criterion was effectively f6(x) > 1.99999988079071. Each algorithm was run

for total of 1000 runs. The parameter setups are shown in Table 6.5:

Table 6.5: Parameter setup for F6 function

PS SS LR CR CP MP EL
GA 200 - - - 1 0.01 2

UMDA 400 120 - - - - -
PBIL 160 2 0.15 - - - -

DEUMd 200 2 - 8 - - -

For the GA, truncation selection and uniform crossover were used. The experimental

results in the form of RLD are shown in Figure 6.5, which shows that for most of the

runs the performance of DEUMd, both in terms of fitness evaluation and success rate was

better than that of other algorithms. For example, Figure 6.3 shows that, with DEUMd

80% of the runs found solution within around 17× 102 fitness evaluation in comparison to

27× 102, 230× 102 and 50× 102 fitness evaluation of PBIL, UMDA and GA respectively.

Equal products function

This problem is presented in Baluja & Davies (1997); de la Ossa et al. (2004). Given a

set of n random real numbers {a1, a2, ..., an} from an interval [0, k], a subset of them is

selected. The aim of the problem is to minimise the difference between the products of

the selected and unselected numbers. This can be written as:

fep(x) =

∣∣∣∣∣
n∏

i=1

h(xi, ai)−
n∏

i=1

h(1− xi, ai)

∣∣∣∣∣
94



Figure 6.5: Experimental results in the form of RLD showing, for each algorithm running
on the 20 bit binary code representation of Schaffer f6 function, the cumulative percentage
of successful runs that terminated within a certain number of function evaluations

where,

h(x, a) =

 1 if x = 0

a if x = 1

The optimum value is unknown as the real numbers ai are generated randomly. However

the optimum should be close to zero. We take the problem dimension to be 50. Following

de la Ossa et al. (2004), the random numbers are taken from the interval [0,4]. Each

algorithm was run for total of 100 runs (each time with a random instance of a). The

parameter setups for each of the algorithm are shown in Table 6.6:

Table 6.6: Parameter setup for Equal products

PS SS LR CR CP MP EL
GA 500 - - - 0.6 0.01 100

UMDA 500 250 - - - - 100
PBIL 500 250 0.5 - - - 100

DEUMd 1000 12 - 0.01 - - 1

Table 6.7: mean ± stdev of fitness and number of fitness evaluation for each algorithm on
Equal products problem

GA UMDA PBIL DEUMd

fitness 211.59 ± 5.03 ± 9.35 ± 2.14 ±
(1058.47) (18.29) (43.36) (6.56)

evaluation 1000000 ± 1000000 ± 1000000 ± 1000000 ±
(0) (0) (0) (0)

95



For the GA, truncation selection and uniform crossover were used. Since, the optimum for

this problem was not known and was different for each instance of the problem, the RLD

could not be shown. Results are shown in Table 6.7. We can see that the average fitness

found by DEUMd was better than that found by rest of the algorithms. The standard

deviation for DEUMd was also less than that for other algorithms. This shows that the

DEUMd is more predictable and has consistent performance.

Colville function

This is a minimisation problem defined in Michalewicz (1996), and also used by de la Ossa

et al. (2004). The function can be defined as

fc(x) = 100(x2 − x2
1)

2 + (1− x1)2 + 90(x4 − x2
3)

2 + (1− x3)2+

10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1)

where, −10 ≤ xi ≤ 10.

We have taken the solution length to be 60 where, each xi is represented as a 20 bit binary

string. The optimum value for fc is 0. 100 independent runs of each algorithm were

executed for this problem. The parameter setups for each of the algorithm are shown in

Table 6.8:

Table 6.8: Parameter setup for Colville

PS SS LR CR CP MP EL
GA 500 - - - 0.8 0.01 -

UMDA 1024 512 - - - - -
PBIL 500 1 0.005 - - - -

DEUMd 1000 1 - 0.01 - - -

For the GA, tournament selection and onepoint crossover were used. The table below

(Table 6.9) shows the mean ± standard deviation for fitness and number of evaluation for

each of the algorithms. We can see that, DEUMd and GA had similar performance with

96



both finding solutions closer to the global optima. However, the standard deviation for

DEUMd was slightly better than that of GA.

Table 6.9: mean ± stdev of fitness and number of fitness evaluation for each algorithm on
Colville problem

GA UMDA PBIL DEUMd

fitness 0.61 ± 40.62 ± 2.69 ± 0.61 ±
(1.02) (102.26) (2.54) (0.77)

evaluation 1000000 ± 62914.56 ± 1000000 ± 1000000 ±
(0) (6394.58) (0) (0)

SixPeaks function

The SixPeaks function (Baluja & Davies, 1997; Larrañaga & Lozano, 2002) can be math-

ematically defined as

Fsp(x, t) = max{tail(0, x), head(1, x), tail(1, x), head(0, x)}+R(x, t)

where,

tail(b, x) = number of tailing b′s in x

head(b, x) = number of leading b′s in x

R(x, t) =


n if tail(0, x) > t and head(1, x) > t or

tail(1, x) > t and head(0, x) > t

0 otherwise

The goal is to maximise the function. This function has 4 global optima which are isolated

and therefore are difficult to find. It also has two local optima which are easy to get and

therefore the search algorithms tend to converge on local optima. We have taken the

dimension to be 100 and t to be 30, thus the optimum fitness value is 169. Each algorithm

was run for total of 100 runs. The parameter setups for each of the algorithm are shown

in Table 6.10:

97



Table 6.10: Parameter setup for SixPeakes

PS SS LR CR CP MP EL
GA 50 - - - 0.6 0.01 2

UMDA 1024 512 - - - - -
PBIL 100 30 0.1 - - - -

DEUMd 40 4 - 0.3 - - 2

For the GA, truncation selection and uniform crossover were used. As expected the uni-

variate EDAs were not able to find the global optima as they were deceived towards the

local optima. This result applies to DEUMd as well. Mean ± standard deviation of fitness

value and number of evaluation for each algorithm are shown in Table 6.11.

Table 6.11: mean ± stdev of fitness and number of fitness evaluation for each algorithm
on SixPeaks problem

GA UMDA PBIL DEUMd

fitness 99.1 ± 98.58 ± 99.81 ± 100 ±
(9) (3.37) (1.06) (0)

evaluation 49506 ± 121333.76 ± 58210 ± 26539 ±
(4940) (14313.44) (3659.15) (1096.45)

Trap function of order 5

Let use recall the Trap function of order k (Pelikan, 2002) defined in previous chapter

(5.4).

ftrap,k(x) =

n
k∑

i=1

trapk(xbi,1 + ...+ xbi,k)

Each block (xbi,1 + ...+xbi,k) gives a fitness which can be calculated through general trap

function of order k

trapk(u) =

 fhigh, if u = k

flow − uflow
k−1 , otherwise

Here, u is the number of ones in the input block of k bits. The trap function of order

5 is an instance of the general trap function where k = 5, fhigh = 5 and flow = 4. The

important feature of a trap function is that the block of bits with u < k has decreasing

fitness as u increases and so misleads the algorithm away from the global optimum. We

take the problem dimension to be 60. Each algorithm was run for total of 1000 runs. The

98



parameter setups for each of the algorithms are shown in Table 6.12:

Table 6.12: Parameter setup for trap5

PS SS LR CR CP MP EL
GA 1500 - - - 1 0.01 2

UMDA 30000 15000 - - - - -
PBIL 30000 1 0.1 - - - -

DEUMd 2000 20 - 0.1 - - 2

For the GA, tournament selection and onepoint crossover were used. The results in the

form of RLD are shown in Figure 6.6.

Figure 6.6: Experimental results in the form of RLD showing, for each algorithm running
on the 60 bit Trap function of order 5, the cumulative percentage of successful runs that
terminated within a certain number of function evaluations

Both, PBIL and UMDA, were not able to find the solution and therefore their results are

not present in the Figure 6.6. As expected, GA with onepoint crossover was able to find

the solution. Interestingly, DEUMd was also able to find the solution, however, with very

high fitness evaluation.

6.4 Analysis of Results

Our experimental results show that, DEUMd gives satisfactory results for most of the

problems that we have tested and fails where we would expect it to. We perform a

statistical analyse on the significance of the results presented above by using a t-test.

99



For the univariate problems (such as Onemax), by setting the population size to 1.5n and

by setting D = P , DEUMd, as with DEUMpv, was able to find the optimum solution in a

single generation.

For problems with low order of dependency between variables (such as plateau and checker

board) the performance of DEUMd (in terms of number of fitness evaluations taken to

terminate) was significantly better than that of other univariate EDAs and also of the GAs

tested. This can be verified from the t-test comparison (on number of fitness evaluations)

shown in the Table 6.13. Here, the p-values are shown for each comparison on each

problem. All p-values are << 0.05. This indicates that the difference in algorithms’

performance originates from their respective effectiveness rather than from random noise.

Table 6.13: Results of the t-test comparison of number of fitness evaluation on problems
with lower order dependency

DEUMd DEUMd DEUMd

vs. PBIL vs. UMDA vs. GA
Onemax 0.000 0.000 0.000
Plateau 0.000 0.000 0.000

Checkerboard 0.000 0.000 0.000

For the problems with higher order and deceptive dependency (such as SixPeaks and Trap

of order 5), DEUMd, as with other univariate EDAs was deceived by the structure of

fitness landscape. This can be clearly seen from the Table 6.11 for SixPeaks and Figure

6.6 for Trap function. For the SixPeaks function, none of the algorithm could find optimum

solution. For the trap function, UMDA and PBIL could not find the optimum, even using

a population size of 30000. However, a simple GA with one-point crossover could find

the solution after an average of 62000 fitness evaluations. Interestingly, DEUMd with

population size of 2000 could also find the solution, however, with a very large average

fitness evaluation, 868000. It shows that, although DEUMd is misled by trap function, by

slowing the cooling rate and choosing the correct population size, it still could overcome

a trap of order 5. Because of the low quality of results, the t-test was not applied to test

the significance.

For those problems where the optimum was not known (or was difficult to get) (Colville

100



and Equal products), the performance of DEUMd was comparable to that of GA and other

univariate EDAs and was better in some cases (see Tables 6.7 and 6.9). These results can

be verified from the t-test comparison (on quality of fitness) shown in Table 6.14. Here,

the p-values are shown for each comparison on each problem. Although the mean fitness

for the DEUMd was better than that for rest of the algorithms on the Equal products

function, the p-values shows that this result is not significant in comparison to PBIL and

UMDA (as p-values are > 0.05), but it is significant in comparison to the GA. Similarly,

for Colville function, the results for DEUMd are not significant in comparison to GA but

are highly significant in comparison to PBIL and UMDA.

Table 6.14: Results of the t-test comparison of quality of fitness for Colville and Equal
products function

DEUMd DEUMd DEUMd

vs. PBIL vs. UMDA vs. GA
Equal products 0.103 0.139 0.05

Colville 0.000 0.00016 0.974

6.5 Comparing DEUMd with DEUMpv

So far in this chapter, we have given the extensive experimental analysis comparing the

performance of DEUMd with that of other univariate EDAs and GA. However, we find it

informative to give results comparing the performance of DEUMd with its previous version,

DEUMpv. In the experimental results section (Section 5.3) of chapter 5, we have shown

the graphs comparing the performance of DEUMpv to that of other univariate EDAs on

three different problems. Here, we re-plot those graphs together with the performance of

DEUMd added to it.

Onemax Problem

For Onemax problem, the performance of DEUMpv and DEUMd was exactely the same.

For both algorithms, the first solution sampled from MRF parameters, α, calculated from

the initial population of 1.5n solutions, and with D = P , was found to be the optimum

101



solution. Therefore, the number of fitness evaluation for both algoriothm was exactely

1.5n + 1. Figure 5.3 in previous chapter shows the scalibility for DEUMpv on 30 to 180

sized Onemax problems, which can also be seen as the scalability for DEUMd.

Schaffer f6 function

Figure 6.7 is the update to the Figure 5.6 showing the added RLD for DEUMd on 20-bit

gray coded Schaffer f6 function. Here, DEUMd, as did DEUMpv, also used the population

size of 500 and the selection size of 2. The cooling rate τ was 1.5. For the detail on

the parameter setting of rest of the algorithm, please see section 5.3.1. We can see that,

although the success rate for finding a solution for DEUMd was 92% compared to 94% of

DEUMpv, the number of function evaluations needed to find the solution for DEUMd was

significantly less than that of DEUMpv and other EDAs (shown in log scale in figure 6.7).

Figure 6.7: RLD for DEUMd in comparison to DEUMpv and other univariate EDAs,
showing, for each algorithm running on the 20-bit gray code representation of Schaffer f6
function, the cumulative percentage of successful runs that terminated within a certain
number of function evaluations

For the comparison of DEUMd and DEUMpv on binary coded Schaffer f6 function, see

Figure 6.5 and Figure 5.5, which show that the performance of DEUMd was better than

that of DEUMpv in term of both percentage of successful runs and the number of fitness

evaluations.

102



Trap function of order 5

For the Trap function of order 5, we found that DEUM was not able to find the solution

even with the very high number of fitness evaluation 1. As other univariate EDA, it was

deceived by the fitness landscape of the problem resulting in premature convergence to

the local optima. In contrast, by slowing the cooling schedule, DEUMd was able to find

the optimum for Trap function of order 5 (see Figure 6.6).

To summarise this section, we state that the results comparing DEUMpv and DEUMd

showed that, for the univariate problems, performance of DEUMd as expected was similar

to the performance of DEUMpv. For the rest of the problems tested, DEUMd outperformed

DEUMpv. These results indicate that the approach of sampling the Gibbs distribution

using a cooling schedule in DEUMd has an advantage over the approach of updating and

sampling a probability vector using a learning rate in DEUMpv.

6.6 Cost benefit analysis of using fitness modelling approach

to estimating MRF parameters in EDAs

The computational cost of Estimation of Distribution using fitness approximation ap-

proach to MRF is of polynomial complexity in comparison to the linear complexity of

other univariate EDAs. The reason behind such a high computational cost is mainly

because of the SVD technique (Press et al., 1993) used to make the least square approxi-

mation of MRF parameters, α, (computational cost of other techniques may vary and are

most likely to be cheaper). Assuming N = n, computational complexity to compute SVD

is O(n3) (For N < n, it is O(n2N) and for N > n, it is O(nN2)) (Golub & Van Loan, 1989;

Suda & Kuriyama, 2004), whereas computational complexity to compute the univariate

marginal frequency is O(nN). However, our experiments show that there is a case to be

made for a more sophisticated estimation of distribution in certain circumstances.
1see experimental results section in chapter 5

103



1. DEUMd can significantly reduce the number of fitness evaluations required to solve a

problem. This will be of particular benefit when fitness evaluation is costly and can be

traded off against the computational cost of estimating the distribution.

2. On the problems where only the near optimum solutions could be found, DEUMd

outperformed the other EDAs on quality of solution, often significantly. This suggests

that DEUMd should be tried on problems where the benefit of increased solution quality

is likely to outweigh computational cost.

6.7 DEUM algorithms can work even without using an ex-

plicit selection operator

So far we have seen that DEUM algorithms, both based on probability vector approach to

sampling and direct sampling of Gibbs distribution, can significantly reduce the number

of fitness evaluation needed to find the solution. In this section we describe one of the

important properties of the DEUM algorithms. That is, their ability to perform optimisa-

tion even without using an explicit selection process. In other words, DEUM algorithms

can exclude the selection operators, such as truncation selection or tournament selection,

from their work process, and can use the entire population to estimate and sample the

MRF (and still perform the optimisation task). This has been first noted in Shakya

et al. (2004a). This is a distinct property of DEUM algorithms that differs it from other

EDAs, and needs to be understood in order to completely understand the success of these

algorithms.

There are various ways to explain this property. However, the key point is as follows:

in order to estimate the distribution, DEUM builds a model of fitness function over the

entire set of solutions. This contrasts with other EDAs, which build a model of good

solutions by only observing the values of each variable in the solution. This allows DEUM

to exclude the use of fitness as an explicit way to select solutions. Another way to see this

is that, DEUM uses the fitness in the variation process, and therefore does not require

104



good solutions to be explicitly selected. Let us describe this concept in more detail.

6.7.1 Excluding selection operator from other EDAs

In a typical EDA (or a GA), the fitness is used in the selection phase of evolution in order

to explicitly select the set of solutions that takes part in the variation process. Whereas,

the variation phase completely depends on the allele of these selected set of solution and

does not use (or need) fitness for estimating and sampling probability distribution. This

also applies to the crossover and mutation approach to variation in GAs. Without a

selection process variation would also fail, i.e., the model of distribution build from the

entire population would not be better than the initial random model used to sample the

initial population. Therefore, the evolution would not progress towards optimum.

Figure 6.8: A typical run of PBIL without selection pressure on 16 bit Onemax problem
showing maximum and average fitness of the population over 10000 generations. Population
size is 30, learning rate is 0.1

Let us give as example. In Figure 6.8, the typical evolution process of PBIL over 10000

generation on Onemax problem without using any selection operator is shown. Here,

the population, P , consist of 30 solution and all 30 solutions was selected for estimating

the distribution, i.e., here D = P . The maximum and average fitness of the population is

plotted against the number of generation. We can notice that the population is converging

to a distribution that is pointing towards equal number of 1 and 0 in the solution. This

result is obvious, as the frequency of 0 and 1 in a particular position of a random population

105



is likely to be equal. However, there will be a small difference in the frequency due to the

random noise and therefore each element pi of the probability vector, p, will be increased

or decreased according to such noise. Sampling from such p gives some increase or decrease

to number of 1 and 0 in child population. This process continues and over long term, p

converges to some random distribution where number of pi pointing towards 1 and 0 will

be almost equal (subject to some random noise). The rate of convergence depends upon

the learning rate parameter λ 2. As bigger the λ will be, as faster the convergence will be.

For example, in case of UMDA, which can be seen as an instance of PBIL with learning

rate λ = 1, the convergence will be much faster. This affect is shown in Figure (6.9),

where the maximum and average fitness of the population over 150 generation for UMDA

is plotted.

Figure 6.9: A typical run of UMDA without selection pressure on 16 bit Onemax problem
showing maximum and average fitness of the population over 10000 generations. Population
size is 30

6.7.2 Excluding selection operator from DEUM

Now let us consider the DEUM algorithm and explain what happens if we use entire

population to estimate and sample the MRF. In other words what happens if we fit the

univariate MFM (or any MFM) to the entire population of solution. The answer is, DEUM

will still perform the optimisation. An example is shown in Figure (6.10) where the typical

evolution process of DEUMd over 100 generation on Onemax problem without using any
2see Figure 2.11 in chapter 2 for PBIL workflow

106



selection pressure is shown. Here, the population, P , consist of 30 solution and all 30

solutions was selected for estimating the distribution, i.e., here D = P . We see that the

population is converging to the optimum solution 3.

Figure 6.10: A typical run of DEUMd without selection pressure on 16 bit Onemax problem
showing maximum and average fitness of the population over 100 generations. Population
size is 30, cooling rate is 1

In order to explain this effect, we first need to recall the MRF parameters α. As we said

earlier α completely defines the Gibbs distribution for any MRF, where each αi are the

value associated with xi. Regardless of whether α is calculated by fitting univariate MFM

over entire population of solution or over the fraction of it, we could always suggest the

value for xi that maximises (or minimises) the fitness f(x) by looking on corresponding

αi. Now, the only thing we need to do is to come up with the sampling method that will

use this information.

In DEUMpv, we have derived the updating rule that updates the probability vector,

p = {p1, p2, .., pn}, depending on α, where, negative αi increased pi and therefore in-

creased the probability of xi = 1 in next generation. This increased the probability that

combination αixi will be negative, by such increasing the probability of U(x) to be mini-

mum. Similarly, positive αi decreased pi and therefore decreased the probability of xi = 1

in next generation. This increased the probability that combination αixi will be negative,

by such again increasing the probability of U(x) to be minimum. Therefore, sampling

from such p has higher probability of generating x, that will result in minimum U(x).
3This graph is also typical for DEUMpv

107



Similarly, in DEUMd, we have assumed jpd for any solution x (as shown in (4.6)) to be

p(x) =
f(x)
Z

It can be noticed that, as bigger the f(x) will be, as higher its probability p(x) will be. In

terms of Gibbs distribution, this formulation can be equivalently written as

p(x) =
e−U(x)/T

Z

using which, we get the marginals

p(xi = 1) =
1

1 + eβαi

(see section 5.2 in this chapter for more detail). As stated earlier, regardless of whether

α are estimated from P or D, in order to maximise fitness, a negative αi indicates that

the value of xi should be 1 and a positive αi indicates that the value of xi should be

−1. This is reflected in above formulation for marginal probability of p(xi = 1). Here,

p(xi = 1) > 0.5 if αi < 0 and p(xi = 1) < 0.5 if αi > 0. Thus, by sampling from such

marginals, we have higher probability of moving towards fitness maximisation.

6.7.3 So is there any need of explicit selection in DEUM ?

The answer is both yes and no as heavily depends on the problems applied.

On the one hand, using selection may reduce the unnecessary information to be included

in the estimation of MRF parameters, therefore may increase the efficiency of the algo-

rithm. This is also proved by the experiment we have presented so far. In most of those

experiments, a set D consisting of good solutions from parent P was selected to estimate

the MRF parameters. This gave better performance than using D = P .

However, the estimation of MRF parameters may get better as the number of dataset

grows. In other words, it is better to have as many solutions as possible for estimating

108



the MRF parameters as each solution contains some unique information about the fitness.

In fact, as shown in Figure 6.2 and Figure 5.3, for Onemax problem (5.2), the univariate

MFM (4.22) being an exact model of the fitness gives a very efficient result even without

using any explicit selection operator. This suggests that, sometimes, it may be better to

use entire population for estimation of MRF.

6.8 Summary

In this chapter, we have presented DEUMd: a DEUM algorithm with a direct Gibbs dis-

tribution sampling technique. DEUMd is an update to the DEUMpv algorithm, presented

in previous chapter, that used probability vector approach to sampling. We described the

use of temperature in Gibbs distribution in order to balance the exploration and exploita-

tion in DEUMd. We presented the extensive experimental analysis on the performance of

DEUMd in a wide range of optimisation problems. Further, we described the cost benefit

analysis of using fitness modelling approach to estimation of distribution in DEUM algo-

rithms. Finally, we described an important property of DEUM algorithms, which is their

ability to perform optimisation without using any explicit selection operators.

The proposed DEUMd algorithm is a univariate EDA and is relatively easy to implement.

The results show that, it can significantly reduce the number of fitness evaluations needed

to find optimum. Together with its better performance in the univariate problems, we

also found that it can efficiently solve the problems with simple interactions between

variables (such as Plateau and Checkerboard). Furthermore, our results shows that it

can also overcome the problem with deceptive interactions, such as trap 5. These results

suggest the following conclusion: for any optimisation problem, the first EDA to try is

the univariate EDA (Mühlenbein, 1998). There are two main reasons for this, 1) They are

easy to implement, and 2) Set of problems that has been shown to be solved by univariate

EDA is surprisingly large. Among univariate EDAs, however, DEUMd shows to be the

promising one and therefore could serve as a preferred choice.

109



Chapter 7

Is-DEUM: A step towards

multivariate DEUM

So far in this thesis, we have proposed two variants of DEUM algorithm using a univariate

model of probability distribution. They were shown to perform better than other EDAs

of their type over a wide range of optimisation problems. This chapter extends DEUM

algorithm to use a bivariate model of probability distribution. Therefore, this chapter

can be seen as an step forward towards the multivariate DEUM. We present two variants

of DEUM that use different sampling technique, 1) Metropolis sampling and 2) Gibbs

sampling, and apply them to a well known Ising spin glass problem (Kindermann & Snell,

1980).

Ising spin glass problem has been introduced in early 1920s to model the spin glass system.

They have range of practical applications in both statistical physics and AI. Furthermore,

the introduction of Ising spin glass problem has played a significant role in the development

of the MRF theory itself (Brush, 1967; Preston, 1976). Due to their interesting properties,

such as symmetry and a large number of plateaus, they have also been widely studied by

the GA (and EDA) community (Pelikan & Goldberg, 2003; Pelikan, 2002; Santana, 2003b,

2005).

110



The motivation behind choosing the Ising spin glass problem for the bivariate implemen-

tation of DEUM algorithm is twofold:

1. Ising spin glass problems have an undirected structure and therefore can naturally

be incorporated in the form of cliques and potentials. This eliminates the task of

structure learning.

2. Ising spin glass problems have been widely studied by both GA and EDA community

and therefore we find it useful to compare the performance of our approach with that

of previously proposed ones.

The outline of the chapter is as follows. We start by describing the Ising spin glass problem

and give some background on previous applications of EDAs to it. We then present the

MRF approach to modelling the Ising spin glass problem and describe how to estimate the

model parameters from the population of solutions. We then incorporate this approach

in a DEUM, called DEUM with Ising model (Is-DEUM) (Shakya et al., 2006). We then

present the experimental results with Is-DEUM using a Metropolis sampling method. This

is followed by the experimental results with Is-DEUM using a Gibbs sampling method.

Finally we present some discussion of the results and summarise the chapter.

7.1 The Ising spin glass problem and EDAs

The general Ising spin glass problem can be described by an energy function, H, defined

over a set of spin variables σ = {σ1, σ2, ..., σl} and a set of coupling constants h and J as

H(σ) = −
∑
i∈L

hiσi −
∑

i<j∈L

Jijσiσj (7.1)

Here, each coupling constant hi ∈ h and Jij ∈ J relate to a single spin σi and a pair of

spins σi and σj respectively. Each spin variable σi can be either +1 or -1. One specific

choice of value for the spin variable is called a configuration. L is a lattice of n sites.

111



Given coupling constants hi and Jij , the task in the Ising spin glass problem is to find

the value for each σi that minimises the energy, H. For the purpose of this thesis, we

only consider the coupling constants relating pairs of spin variables and therefore set

hi = 0, ∀i ∈ L. Additionally, we restrict Jij to take only two values Jij ∈ {+1,−1}.

Figure 7.1: A structure showing the interaction between spins for a two dimensional Ising
spin glass system with 4× 4 spins

Here, we consider the spin glass system on a two dimensional lattice consist of n = l × l

sites, where each spin variable interacts only with its nearest neighbouring variables on a

toroidal lattice (Figure 7.1). The Hamiltonian specifying the energy for this system can

be written as

H(σ) = −
l∑

i=1

l∑
j=1

(
Jij,(i+1)jσijσ(i+1)j + Jij,i(j+1)σijσi(j+1)

)
(7.2)

where, i+ 1 = 1 if i = l and j + 1 = 1 if j = l.

Here, each Jij,i′j′ is the coupling constant in two dimensional lattice relating to spin σij

and σi′j′ .

For convenience, we reformulate this as a maximisation problem so seek to maximise

−H(σ) =
l∑

i=1

l∑
j=1

(
Jij,(i+1)jσijσ(i+1)j + Jij,i(j+1)σijσi(j+1)

)
(7.3)

In the context of EDAs, spin glass systems on a two dimensional lattice have been of par-

112



ticular interest to researchers. In particular, Pelikan & Goldberg (2003); Pelikan (2002);

Pelikan et al. (2004) showed that hBOA could efficiently solve these problems outperform-

ing other algorithms. Santana (2003b) used the Ising spin glass problem as a test problem

for the two algorithms MN-EDA and MN-FDA and showed that their performance is bet-

ter then that of other EDAs based on Bayesian networks. Also (Mühlenbein et al., 1999)

stated that, although the two dimensional Ising spin glass problem is in the class of Ad-

ditively Decomposable Functions (ADF), it cannot be efficiently represented as a junction

tree 1. This is because, the junction tree based EDA has a triangular structure of depen-

dency and therefore requires interaction between variables of order at least 3. However,

the two dimensional Ising spin glass problem has a bivariate structure and therefore has

a maximum clique of order 2. Santana (2005) argues that the Kikuchi approximation

approach to estimate the distribution used by MN-EDA can accurately represent the bi-

variate dependency, and therefore has an advantage over junction tree based EDAs. This

argument applies to the DEUM algorithms as well, as they also can accurately repre-

sent the distribution encoded by the structure in the form of potential functions. This is

described in detail in next section.

7.2 MRF approach to modelling Ising spin glass problem

Here, we identify the cliques and define the potential function for the Ising spin glass

problem. This is then used to define the MFM.

In Figure 7.1, each spin variable, σij ∈ σ, can be seen as a random variable, Xij , in a set,

X. Therefore, each solution X = x can be seen as the string representation of the matrix

x = {x11, x12, ..., x1l,

x21, x22, ..., x2l,

...

xl1, xl2, ..., xll} (7.4)
1Junction tree is described in chapter 3

113



Here, the total number of variables in X is n = l2. For such x, the fitness function to be

maximised is

f(x) =
l∑

i=1

l∑
j=1

(
Jij,(i+1)jxijx(i+1)j + Jij,i(j+1)xijxi(j+1)

)
(7.5)

Each variable Xij ∈ X interacts with four of its immediate neighbours. Figure 7.1 can

be seen as an undirected graphical structure, G, for X. There are total of 2n order 2

cliques in G. For each clique {Xij , Xi′j′}, we assign a potential function βij,i′j′xijxi′j′ and

therefore the energy, U(x) in MFM (4.8) for such X will be

−ln(f(x)) = U(x) =
l∑

i=1

l∑
j=1

(
βij,(i+1)jxijx(i+1)j + βij,i(j+1)xijxi(j+1)

)
(7.6)

In terms of Gibbs distribution it can also be written as

p(x) =
e
−

∑l

i=1

∑l

j=1(βij,(i+1)jxijx(i+1)j+βij,i(j+1)xijxi(j+1))/T

Z
(7.7)

Here, each βij,i′j′ is the MRF parameter associated with bivariate clique {Xij , Xi′j′}. It is

important to distinguish between βij,i′j′ in U(x) with Jij,i′j′ in f(x). βij,i′j′ is a real valued

parameter of the model and will be estimated from a set of solutions. This contrasts with

the coupling constants Jij,i′j′ ∈ {−1, 1}. We use β to denote the set of all 2n bivariate

MRF parameters βij,i′j′ . Equation (7.6) is the minimal MFM for the two dimensional

Ising spin glass problem.

As stated in chapter 4, depending upon the number and order of cliques considered, we

may construct different MFMs from a single graph G. For example, in addition to poten-

tial functions βij,i′j′xijxi′j′ for order 2 cliques {Xij , Xi′j′}, we can also assign a potential

function, αijxij , to each singleton clique {Xij}. The energy for the resulting MFM can be

written as

−ln(f(x)) = U(x) =
l∑

i=1

l∑
j=1

(
αijxij + βij,(i+1)jxijx(i+1)j + βij,i(j+1)xijxi(j+1)

)
(7.8)

114



We use α to denote the set of all n univariate parameters αij . Equation (7.8) is the

complete MFM for the two dimensional Ising spin glass problem.

We use θ to denote the full set of parameters for either MFM.

7.3 Learning MRF parameters for Ising spin glass problem

Once we construct the MFM, finding the parameter of the model is a straight forward

task. As described in chapter 3, (and also implemented in the previous two chapters), the

basic idea here is to use a set of solutions D to approximate the parameters, θ, of the

MRF. Each solution in a given population provides an equation satisfying the MFM (4.8).

Selecting a set of solutions D consisting of N promising solutions from a population P

therefore allows us to estimate the distribution by solving the system of equations (4.24).

For the minimal MFM, (7.6), F will be an N dimensional column vector containing

−ln(f(x)) of the solutions in D, θ will be a 2n dimensional vector of all MRF para-

meters β and A will be an N × 2n dimensional matrix, where each element ars of A is the

product of the alleles from rth solution associated with sth parameter of the model. For

the complete MFM, (7.8), θ = {α, β} will be a vector of 3n MRF parameters, as there will

be 2n parameters in set β and n parameters in set α, and A will be an N×3n dimensional

matrix accordingly.

As mentioned earlier in (chapter 5, section 5.2.2), solving a system of linear equation is

a computationally expensive process. It grows polynomially to the size of the matrix A.

As number of parameter in the model grows, the size of the matrix A grows and therefore

the cost of estimating the MRF parameter grows.

115



7.4 Using a Metropolis method to sample MRF

So far we have shown how to construct a MFM for the Ising spin glass problem and use it

to approximate the MRF parameters. Once we get the parameters of the model, the jpd,

p(x), is completely specified. Therefore, the next step is to sample p(x). In this section

we develop a zero temperature Metropolis method for this purpose.

7.4.1 Zero Temperature Metropolis method

Metropolis methods are a class of Markov Chain Monte Carlo (MCMC) algorithms

(Metropolis, 1953) that have been widely used to sample from a probability distribu-

tion. It tries to minimise the energy of the Gibbs distribution. In our case, it results

in maximisation of fitness (4.8). Here we present a variant which we call Bitwise Zero-

Temperature Metropolis method (BZTM). Given a set of MRF parameters, θ, calculated

from a set of solutions D, it is then possible to sample a new solution, xo = {xo
1, x

o
2, ..., x

o
n}

using the BZTM as shown in Figure 7.2.

Bitwise Zero-Temperature Metropolis method (BZTM)

1. Generate a solution xo = {xo
1, x

o
2, .., x

o
n} at random.

2. Repeat:

(a) Set xtmp = xo.

(b) For i = 1 to n

i. Mutate variable xo
i to obtain the mutated solution xo′.

ii. Set ∆U = U(xo′)− U(xo).
iii. if ∆U < 0 set xo = xo′.

:Until xtmp = xo.

3. Terminate with answer xo.

Figure 7.2: The pseudo-code of the Bitwise Zero-Temperature Metropolis method

For the complete MFM presented in (7.8), ∆U can be determined explicitly from the

116



following formula:

∆U =
(
xo′

ij − xo
ij

) (
αi + β(i−1)j,ijx

o
(i−1)j+

βij,(i+1)jx
o
(i+1)j + βi(j−1),ijx

o
i(j−1) + βi(j+1),ijx

o
i(j+1)

)
(7.9)

Similarly, for the minimum MFM presented in (7.6), ∆U can be determined explicitly

from the following formula:

∆U =
(
xo′

ij − xo
ij

) (
β(i−1)j,ijx

o
(i−1)j+

βij,(i+1)jx
o
(i+1)j + βi(j−1),ijx

o
i(j−1) + βi(j+1),ijx

o
i(j+1)

)
(7.10)

This significantly reduces the cost of calculating ∆U .

7.4.2 DEUM with the Metropolis method

Now that we know how to sample the MRF parameters, we can formulate DEUM for

the Ising spin glass problem (Is-DEUM). As the Is-DEUM described here implements the

Metropolis method as the sampling technique, we denote it as Is-DEUMm. (Figure 7.3)

shows the workflow of Is-DEUMm.

Is-DEUM with Metropolis sampler (Is-DEUMm)

1. Generate a population, P , of size M at random.

2. Select a set D consisting of N fittest solutions from P , where N ≤M .

3. Calculate the MRF parameters θ by fitting MFM to D.

4. Repeat:
Sample xo = {xo

1, x
o
2, ...., x

o
n} using BZTM

:Until R iteration completes Or f(xo) is optimal/good enough

5. Terminate with answer xo.

Figure 7.3: The pseudo-code of the DEUM with Metropolis sampling method

117



Notice that the Is-DEUMm only has a single generation. Also in step 4 of the algorithm,

we repeatedly use BZTM to sample different xo. We found that by repeatedly sampling

the xo with different random start, the optimum solution was found in first generation (as

we shall show in the next section) 2. This therefore eliminates the necessity of creating a

child population 3.

7.4.3 Experiments and Results

Experiments were performed with three different sizes of two dimensional Ising spin glass

systems. They were 4 × 4 (n = 16), 6 × 6 (n = 36) and 8 × 8 (n = 64). Four random

instances of each problem size were used for the experiment. Each instance was generated

by randomly sampling the coupling constant Jij ∈ {+1,−1}. The optimum solution for

each instance was verified by using the Spin Glass Ground server, provided by the group

of Prof. Michael Juenger 4. The parameters for Is-DEUMm were chosen empirically.

These experiments are divided into two parts:

1. A performance comparison with other EDAs

2. A performance comparison between complete and minimal MFM

1. Experiments on the performance comparison with other EDAs

The aim of this experiment is to compare the performance of Is-DEUM with that of other

EDAs. Mainly, the comparison is made with the results presented in Santana (2005), where

the performance of five different EDAs, both using MRF and Bayesian networks, have been

presented for similar instances of Ising spin glass problem. Namely, they were MN-EDA

(using Kikuchi approximation approach), MN-EDAf (using Kikuchi approximation with
2This has also been illustrated in (Shakya et al., 2005c) for the Onemax problem, where a Zero-

Temperature Metropolis algorithm was able to find the solution in single generation
3Though, once we know how to sample from the MRFs, any replacement strategies can be used to form

a child population (see (Shakya et al., 2005c) for an example)
4http://www.informatik.uni-koeln.de/ls juenger/research/sgs/sgs.html

118



fixed structure), MN-FDA (using junction graph approach), EBNAk2 (using Bayesian

network with k2 metrics) and MT-FDA (using a mixture of tree model).

We ran 100 independent run of Is-DEUMm for each of the 12 instances and recorded

the number of fitness evaluations needed to find the optimum. The minimal MFM (7.6)

was used in Is-DEUMm and the whole population was selected for estimation of MRF

parameters, i.e, we takeD = P . Therefore, the selection sizeN was equal to the population

size M . To determine M, we started with the minimum number of M needed to make

the system of linear equation specified (in case of (7.6) the minimum M is 2n). Then we

gradually increased it until a success rate of over 95% was achieved (in other words, until

more than 95 out of 100 runs found the optimum). The resulting M was taken as the

population size for that particular instance. The maximum number of allowed repetitions,

R, for BZTM was set to 3000. Is-DEUMm was terminated if the optimum was found or

R repetitions of BZTM were done. As, at the end of each BZTM, the fitness evaluation

was done in order to calculate f(xo), the number of fitness evaluations was calculated as

the sum of population size and the total repetitions of the BZTM needed before finding

the optimum.

Table 7.1 shows the experimental results on the performance of Is-DEUMm on all 12

instances of the Ising problems.

Table 7.1: Performance of Is-DEUMm with minimal MFM for 12 instances of Ising spin
glass problem

PI FE SD SR PS
I-16-1 41.53 1.14 100 40
I-16-2 60.44 13.96 100 50
I-16-3 52.57 1.96 100 50
I-16-4 41.66 1.38 100 40
I-32-1 126.19 48.87 100 90
I-32-2 107.45 21.07 100 90
I-32-3 98.59 9.98 100 90
I-32-4 115.66 28.82 100 90
I-64-1 231.66 35.28 100 200
I-64-2 361.87 170.24 100 200
I-64-3 362.6 177.75 100 200
I-64-4 275.66 92.15 100 200

The first column shows the problem instance (PI). The second and third column show the

119



average number of fitness evaluation (FE) and the corresponding standard deviation (SD)

over the 100 runs, the fourth column shows the success rate (SR) and the fifth column

shows the population size (PS) used for the corresponding instances.

The performance of Is-DEUMm was significantly better than that of other EDAs presented

in Santana (2005), both in terms of success rate and the number of fitness evaluations

needed to find the optimum. In particular, the best EDA reported in Santana (2005)

was MN-FDAf with average fitness evaluation and success rate of 220.17 and 98.5% re-

spectively for n = 16, 1586.02 and 95.25% respectively for n = 36 and, 6110.8 and 95%

respectively for n = 64. Whereas, for Is-DEUM, they were 49.05 and 100% respectively

for n = 16, 111.96 and 100% respectively for n = 36 and 296.69 and 100% respectively for

n = 64. This is a significant improvement in the performance.

2. Experiment on the performance comparison between complete and minimal

MFM

The aim of this experiment is to show that, for the Ising spin glass problem, the use of

minimal MFM instead of complete MFM does not decrease the quality of the solution,

but does reduce the computational cost needed to find the solution.

Table 7.2 shows the experimental results on the performance of Is-DEUMm using the

complete MFM (7.8) on all 12 instances of the Ising spin glass problems.

The experimental setups were similar to that of Is-DEUMm using the minimal MFM (7.6)

described in previous sub-section. The minimum number of population size (PS) needed

to make the system of linear equation specified for (7.8) was M = 3n, as compared to

M = 2n for (7.6). Therefore as we can see from Table 7.2, the optimum population size

needed for all 12 instance for Is-DEUMm with the complete MFM was greater than that

needed by Is-DEUMm with the minimal MFM (shown in Table 7.1). As a result, the

number of fitness evaluations for Is-DEUMm with the complete MFM was greater than

that of Is-DEUMm with the minimal MFM. Also in sixth column of Table 7.2, the ratio

120



Table 7.2: Performance of Is-DEUMm with complete MFM for 12 instances of Ising spin
glass problem

PI FE SD SR PS tr
I-16-1 61.45 1.27 100 60 1.11
I-16-2 67.43 9.20 100 60 1.02
I-16-3 62.64 3.58 100 60 1.02
I-16-4 61.44 1.38 100 60 1.07
I-32-1 161.52 47.22 100 130 1.33
I-32-2 146.52 17.06 100 130 1.27
I-32-3 137.61 8.22 100 130 1.29
I-32-4 148.64 19.79 100 130 1.34
I-64-1 284.80 49.06 100 250 2.10
I-64-2 376.45 132.26 99 250 1.76
I-64-3 334.99 96.76 100 250 1.55
I-64-4 319.86 115.15 100 250 1.87

of extra time (tr) needed by complete MFM in comparison to minimal MFM is shown for

each instance. For each instance, the tr is equal to the average time taken by Is-DEUMm

with complete MFM divided by the average time taken by minimal MFM. For n = 16

the difference in time is fairly small, however as n grows the tr grows and for n = 64

the time taken by complete MFM is almost double to the time taken by minimal MFM.

This result is expected, as the computational time to calculate the MRF parameters grows

polynomially with the size of the matrix A in the system of linear equations (4.24). Matrix

A grows as selection size N = M grows and N grows as the number of MRF parameters

in the MFM grows.

This result shows that, for Ising spin glass problems, using the minimal MFM instead of

the complete MFM, results in reduced computational cost without losing the quality of

the solutions. We will use the minimal MFM for the rest of the experiments presented in

this chapter.

7.5 Using a Gibbs sampler to sample MRF

So far we have shown that by sampling the MRF using a Metropolis method, Is-DEUM

was able to solve Ising spin glass problem of size n = 16, n = 32 and n = 64. However, for

problem sizes of n = 100 and higher, Is-DEUM with the Metropolis method was not able

121



to find the optimum solution. In this section we describe another sampling method known

as Gibbs Sampler (GS) and incorporate it in Is-DEUM. The aim here is to solve Ising spin

glass problems of larger size. We also present experimental results on the performance of

this version of Is-DEUM.

7.5.1 Gibbs sampler

As with the Metropolis method, the Gibbs sampler (GS) (Geman & Geman, 1987) is a

class of MCMC algorithm that has been widely used to sample probability distributions.

In order to explain GS, we first need to define the formulation of conditional probability

p(xij |Nij) for each variable, xij , from the jpd p(x). Here, Nij is the set of neighbouring

variables to xij . For the two dimenssional Ising spin glass problem on toroidal lattice

(Figure 7.1), this set consist of

Nij = {x(i+1)j , xi(j+1), x(i−1)j , xi(j−1)} (7.11)

Following the notation used in section 6.1, we use x+ to denote x having a particular

xij = +1. Similarly, we use x− to denote x having xij = −1. The probability that the

variable in position ij is equal to 1 given Nij , p(xij = 1|Nij), can then be written as

p(xij = 1|Nij) =
p(x+)

p(x+) + p(x−)
(7.12)

Substituting p(x) from (4.1) and cancelling the Z, we get

p(xij = 1|Nij) =
e−U(x+)/T

e−U(x+)/T + e−U(x−)/T
(7.13)

or,

p(xij = 1|Nij) =
1

1 + e(U(x+)−U(x−))/T
(7.14)

As U(x+) and U(x−) agree in all terms other than those containing xij , the common terms

122



in both U(x+) and U(x−) drop out and we get the following expression for the conditional

probability for xij = 1.

p(xij = 1|Nij) =
1

1 + e2Wij/T
(7.15)

where, Wij for (7.6) is

Wij = βij,(i+1)jx(i+1)j + βij,i(j+1)xi(j+1)+

β(i−1)j,ijx(i−1)j + βi(j−1),ijxi(j−1) (7.16)

Notice that, for the univariate MFM (4.11), the conditional probability, p(xij = 1|Nij),

is generailised to marginal probability, p(xij = 1), where Wij would be equal to αij . The

Equation (6.5) is therefore the univariate variant of (7.15).

Also note that, in (7.15), as T → 0, the value of p(xij = 1|Nij) tends to a limit depending

on the Wij . If Wij > 0, then p(xij = 1|Nij) → 0 as T → 0. Conversely, if Wij < 0, then

p(xij = 1|Nij) → 1 as T → 0. If Wij = 0, then p(xij = 1|Nij) = 0.5 regardless of the value

of T . Therefore, the Wij are indicators of whether the xij at the position ij should be 1

or −1. This indication becomes stronger as the temperature is cooled towards zero.

Now let us describe a variant of GS, which we call the Bitwise Gibbs Sampler (BGS).

Pseudo code for BGS is shown in Figure 7.4. It starts by randomly generating a solution,

then calculates p(xij |Nij) for a chosen xij and replaces it by sampling p(xij |Nij). This

continues until a termination criterion is satisfied. The temperature coefficient, T , in GS

can be used to control the convergence of p(xij |Nij). Here, we starts with high temper-

ature, T , then at each iteration, gradually decrease it using a cooling schedule so as to

gradually converge p(xij |Nij) to its limit. The DEUMd algorithm described in previous

chapter also uses temperature to control the convergence of the marginals.

123



Bitwise Gibbs Sampler (BGS)

1. Generate a solution xo = {xo
1, x

o
2, .., x

o
n} at random.

2. set r = 0 and also set the initial value for T .

3. Repeat:

(a) Set xtmp = xo.

(b) For i = 1 to n

i. Increase r by 1
ii. Decrease T
iii. Set xo

i = 1 with probability p(xo
i = 1|Ni)

:Until xtmp = xo.

4. Terminate with answer xo.

Figure 7.4: The pseudo-code of the Bitwise Gibbs Sampler

7.5.2 DEUM with Gibbs sampler

Now that we know how to sample the MRF using a Gibbs Sampler, we can incorporate it

in DEUM. Figure 7.5 shows the workflow of Is-DEUM with a Gibbs Sampler (Is-DEUMg).

Notice that, as with Is-DEUMm (shown in Figure 7.3), Is-DEUMg only has a single gener-

ation. We found that, for the Ising spin glass problem, by repeatedly sampling the xo with

different random starts, Is-DEUMg was consistently able to find the optimum solution in

the first generation. This, therefore, eliminated the need for having multiple generations.

However, once we know how to sample from MRF, any standard parent replacement strate-

gies can be used to incorporate a multiple generation scheme in Is-DEUMg (if required)

(Shakya et al., 2005c).

124



Is-DEUM with Gibbs Sampler (Is-DEUMg)

1. Generate a population, P , of size M

2. Select the set D consisting of N fittest solutions from P , where N ≤M .

3. Calculate the MRF parameters θ by fitting MFM to D.

4. Repeat:
Generate xo = {xo

1, x
o
2, ...., x

o
n} using BGS

:Until R tieration completes Or f(xo) is optimal/good enough

5. Terminate with answer xo.

Figure 7.5: The pseudo-code of the DEUM with Gibbs Sampler

7.5.3 Experiments and Results

Experiments were conducted with three different sizes of Ising Spin Glass problem: 10×10

(n = 100), 16×16 (n = 256) and 20×20 (n = 400). Four random instances of each problem

size were used for the experiment. Each instance was generated by randomly sampling the

coupling constant Jij ∈ {+1,−1}. The optimum solution for each instance was verified by

using Spin Glass Ground server, provided by the group of Prof. Michael Juenger 5. The

parameters for each algorithm were chosen empirically.

We divide our experiments into three parts:

1. A performance comparison with other EDAs

2. A performance comparison with Repeated Bitwise Gibbs Sampler (RBGS)

3. An effect of population size and selection size on the performance of Is-DEUMg

5http://www.informatik.uni-koeln.de/ls juenger/research/sgs/sgs.html

125



1. Experiment on the performance comparison with other EDA

We made 30 independent runs of Is-DEUMg for each of the 12 instances of the Ising spin

glass problem and recorded the number of fitness evaluations needed to find the optimum.

The minimal MFM (7.6) was used to estimate the energy of the Gibbs distribution. The

population size and selection size for Is-DEUMg were 1000 and 250 respectively for n=100,

3000 and 700 respectively for n=256 and 8000 and 1000 respectively for n=400. The

temperature T for the BGS was set to T = 1/0.0005r, where r is the current number of

xo
i samplings done in BGS (see Figure 7.4). As r increases, T decreases and the solution

xo will converge to a particular value for each xo
i . The maximum number of allowed

repetitions, R, for BGS was set to 500. Is-DEUMg was terminated if the optimum was

found or R repetitions of BGS were done. As, at the end of each BGS, a fitness evaluation

was done in order to calculate f(xo), the number of fitness evaluations was calculated as

the sum of population size and the total repetitions of the BGS needed before finding the

optimum.

Table 7.3 shows the experimental results on the performance of Is-DEUMg on all 12

instances of the Ising spin glass problems.

Table 7.3: Performance of Is-DEUMg on all 12 instances of Ising problem

PI FE SD FE-PS IT SR
I-100-1 1008.90 7.96 8.90 639× 103 100
I-100-2 1002.73 1.82 2.73 149× 103 100
I-100-3 1010.97 10.71 10.97 723× 103 100
I-100-4 1003.20 2.32 3.20 156× 103 100
I-256-1 3015.27 17.45 15.27 115× 105 100
I-256-2 3003.23 2.96 3.23 213× 104 100
I-256-3 3054.28 66.17 54.28 351× 105 97
I-256-4 3007.50 6.05 7.50 639× 104 100
I-400-1 8093.62 113.80 93.62 152× 106 97
I-400-2 8036.47 34.87 36.47 632× 105 100
I-400-3 8058.77 54.14 58.77 103× 106 100
I-400-4 8047.07 42.25 47.07 755× 105 100

The first column shows the problem instances (PI). The second and third column shows

the average number of fitness evaluation (FE) and the corresponding standard deviation

(SD) over the 100 runs. The fourth column shows the average number of fitness evaluation

126



without counting the number of evaluation needed to evaluate the population (FE-PS).

The fifth column shows the average internal calculation (IT) of Is-DEUMg before finding

the solution. Internal calculation is the total number of conditional probability calculations

done over all repetitions of BGS. The sixth column shows the success rate (SR) of finding

the optimum over 100 runs.

Previously, BOA and hBOA have been applied to Ising problem instances of size n = 100,

n = 256 and n = 400 (Pelikan & Goldberg, 2003; Pelikan, 2002; Pelikan et al., 2004).

Their performances were reported to be comparable and sometimes better than state of

the art algorithms for solving Ising spin glass problems.

Our results show that the number of fitness evaluations needed to find the solution for

Is-DEUMg was significantly less than that reported for BOA and hBOA. For example for

n = 400, the average fitness evaluation for hBOA (with a hill climber) was about 105

(BOA was not able to find the solution for n = 400). Whereas, for Is-DEUMg this was

only about 8000.

However, for larger instances of Ising spin glass problem, such as n = 400, the computa-

tional time for sampling xo using BGS gets higher and therefore the repeated sampling

of xo dominates the computational time taken by the rest of the process in Is-DEUMg.

It even dominates the time taken to solve the system of equations. Therefore, the per-

formance of Is-DEUMg for Ising spin glass problem should be evaluated in terms of the

number of internal calculations, (IT), done by the BGS, rather than by the number of

fitness evaluations, (FE). As BOA and hBOA do not have such an internal calculation

process, it is difficult to compare them with Is-DEUMg.

2. Experiment on the performance comparison with Repeated Bitwise Gibbs

Sampler (RBGS)

In Is-DEUMg, we have used GS to sample the MRF which we estimate from the population

of solutions. Here we show how we can directly apply GS to the fitness function and sample

127



xo.

Given the fitness function (7.5), the conditional probability p(xij = 1|Nij) for any xij = 1

can also be estimated directly as

p(xij = 1|Nij) =
1

1 + e2Γij/T
(7.17)

Where,

Γij = J(i−1)j,ijx(i−1)j + Jij,(i+1)jx(i+1)j + Ji(j−1),ijxi(j−1) + Ji(j+1),ijxi(j+1) (7.18)

Repeated Bitwise Gibbs Sampler algorithm (RBGS)

1. Repeat:
Sample a solution xo = {xo

1, x
o
2, ...., x

o
n} using BGS with p(xi = 1|Ni) from (7.17)

:Until R iteration completes Or f(xo) is optimal/good enough

2. Terminate with answer xo.

Figure 7.6: The pseudo-code of the Repeated Bitwise Gibbs Sampler algorithm

We can use (7.17) in BGS (Figure 7.4) as formulation of p(xij |Nij) and sample xo. As

the performance of BGS heavily depends on the initial solution, we repeatedly ran the

BGS with different random starts. Figure 7.6 presents the workflow of the repeated BGS

algorithm (RBGS).

Table 7.4: Performance of Is-DEUM and RBGS for Ising spin glass problem of size n = 100,
n = 256, and n = 400. Each column is the average of all four instances of that particular
problem size

Is-DEUMg RBGS
PI FE-PS IT SR FE IT SR

I-100 6.45 417× 103 100 6.53 330× 103 100
I-256 20.07 136× 105 99 37.19 284× 105 99
I-400 58.98 984× 105 99 94.67 114× 106 87

The temperature T for the BGS was set to T = 1/0.005r, where r is the current number

of xo
i samplings done in BGS (see Figure 7.4). Note that, the constant associated with r

128



here is 0.005 which is greater than 0.0005 used in Is-DEUMg. This was simply because,

with 0.005 the performance of RBGS was better than that with 0.0005. The maximum

number of allowed repetitions R was set to 500.

As at the end of each repetition of BGS, a fitness evaluation (FE) was done to check the

quality of sampled xo, we record the total number of BGS repetitions as the number of

fitness evaluations for RBGS. However, in contrast to RBGS, Is-DEUMg had to evaluate a

population of solutions, which, although taking a negligible amount of time in comparison

to the time taken for a sampling using BGS, hugely contributed to the number of fitness

evaluations for Is-DEUMg. Therefore, for Is-DEUMg, we use the fitness evaluation without

counting the evaluation of the population (FE-PS) to compare with FE of RBGS. On the

other hand, the internal calculation of BGS (IT), is the most dominant factor for the

computational cost in both algorithms and therefore we also record the IT for RBGS and

compare it with that of Is-DEUMg.

Table 7.4, shows the fitness evaluations (FE) (FE-PS for Is-DEUMg), internal calculation

(IT) and success rate (SR) for three different sizes of Ising spin glass problem. Each

column is the average of all four instances for their respective problem size. The result for

Is-DEUMg is the average taken from Table 7.3.

Our results show that in terms of both fitness evaluations and internal calculation taken

to find the optimum, the performance of Is-DEUMg was better than that of RBGS. Also

note that the success rate for Is-DEUMg was 99% in comparison to 87% for RBGS for

n = 400. These results show that sampling from the MRF estimated from the population

instead of the actual fitness function results in better performance of the algorithm.

Let us explain the above results. The fitness landscape of the Ising spin glass problem

contains large number of plateaus. This is because the values of coupling constants, J ,

relating two spin variables are restricted to -1 and +1. As RBGS uses J to estimate p(xij),

it takes time to overcome all the plateau. However, Is-DEUMg uses real-valued MRF

parameters β to estimate p(xij). β therefore alters the fitness landscape by introducing

some variation to the plateau. The result is more efficient searching of the fitness landscape

129



by the sampling algorithm.

3. Experiment on the effect of population size and selection size on the per-

formance of Is-DEUMg

Performance of EDAs (Including DEUM algorithms) highly depends on two key parame-

ters, 1) the population size (PS) and 2) the selection size (SS). Most of the time, giving

a larger PS provides more information about the search space and therefore results in a

better performance. The SS however depends on the type of the problem addressed. For

deceptive problems, such as trap function (5.4), giving a larger selected set of solution

may result in the better estimation of distribution as provides more informance about the

fitness landscape. Whereas, for linear problems, such as Onemax (5.2), providing a small

set may be enough and result in better effeiciency of the algorithm. However, use of a

larger PS and SS comes with a cost, which is a rapid increase in the computational time

taken by the algorithm. Larger PS results in increased number of fitness evaluations (FE)

and larger SS results in increased time to estimate a probabilistic model.

Having a single generation, the negative effect of having a larger PS or SS is less noticable

in Is-DEUMg than in other EDAs, though the positive effect of better estimation of distri-

bution is still noticable. The experiments presented in this section show how the change

in PS and SS affects the performance of Is-DEUMg for Ising spin glass problem.

Table 7.5: The effect of change in population size and selection size on the performance of
the Is-DEUMg

PS,SS 8000,1000 4000,1000 2000,1000 1000,1000 2000,2000 4000,4000 8000,8000
FE 8058.98 4098.40 2113.54 1195.16 2123.35 4117.50 8089.66

FE-PS 58.98 98.40 113.54 195.16 123.35 117.50 89.66
IT 985× 105 119× 106 868× 105 393× 105 613× 105 907× 105 108× 106

tr 1 1.17 0.94 0.51 0.80 1.42 2.07
tr IT 1 1.20 0.88 0.43 0.60 0.97 1.07
tr θ 1 1.18 1.18 0.81 1.56 3.17 5.95
SR 99 99 93 18 84 90 97

Table 7.5 presents the experimental results on the performance of 7 different instances

Is-DEUMg with different combination of PS and SS for n = 400 bit Ising spin glass

problem. Each column represents the performance for specific setup of PS and SS, (PS,SS).

130



The central column is for Is-DEUMg with the smallest (PS,SS) = (1000,1000). The PS

gradually increases up to 8000 and leaves the SS constant to 1000 as we move towards the

left columns of the table. Whereas, towards the right columns of the table both PS and

SS gradually increases to 8000.

Each row of the Table 7.5 shows the effect of change in the PS and SS on different criteria

used to evaluate the performance of the algorithm. The first row shows the number of

fitness evaluation (FE). The second row shows the number of fitness evaluations with-

out counting the evaluation of the population (FE-PS). The third row shows the internal

calculation (IT). The fourth row shows the ratio of time (tr) needed by each instance of

Is-DEUMg to find the solution. tr is calculated as the average time taken by a particular

instance of Is-DEUMg divided by the average time taken by Is-DEUMg(8000,1000). Simi-

larly, fifth and sixth row shows the tr for internal calculation (tr IT) and tr for calculation

of MRF parameters, (tr θ), respectively. Finally, the seventh column shows the success

rate (SR) for each instance of Is-DEUMg. All the figures were the average over 30 runs of

the algorithm on all 4 instances of the problem.

We can see that, the worst success rate (SR) of 18% was for the Is-DEUMg(1000,1000). The

SR gradually improves as the population size (PS) grows. This can be observed by moving

to either left or right columns of the table. This shows that the larger PS improves the

performance. We can also notice that, although the SR grows towards the right columns

of the table, the computational time needed to calculate the MRF parameters, (tr θ), also

grows, and therefore grows the total computational time needed to find the solution, (tr).

This effect is obvious as, with higher SS, the number of equation in (4.24) grows and so

do the computational time to solve it. On the other hand, towards the left columns of the

table, the SR grows, however leaves the tr θ almost unchanged. This shows that using

a higher population size with lower selection size does not decrease the success rate in

comparison to using higher population size and higher selection size, however increases

the efficiency of the algorithm.

Due to the low success rate of less than 95%, we do not include Is-DEUMg(2000,1000),

Is-DEUMg(1000,1000), Is-DEUMg(2000,2000) and Is-DEUMg(4000,4000) for finding the

131



best performing algorithm in all criteria. Among the remaining three instances, Is-

DEUMg(8000,1000) was the best performing algorithm.

Notice that the time to calculate MRF parameters (tr θ) increased 5.95 times for Is-

DEUMg(8000,8000) in comparison to Is-DEUMg(8000,1000). This obviously increased

the time to find the solution, (tr). Also notice that, although the fitness evaluation (FE)

for Is-DEUMg(4000,1000) was less than that of Is-DEUMg(8000,1000), the FE-PS was

higher. As we said earlier, for larger size of Ising spin glass problem, the FE-PS should

be taken as the performance measurer rather than FE as the computation time needed to

evaluate a population is negligible in comparison to the time needed to sample a solution

using GS. This result is also confirmed by internal iteration (IT), which is less for Is-

DEUMg(8000,1000) than that for Is-DEUMg(4000,1000).

7.6 Summary

In this chapter, we have presented a bivariate version of DEUM algorithm and applied

it to a well known Ising spin glass problem. We have also presented two sampling algo-

rithms, Metropolis sampling and Gibbs sampling, and incorporated them to DEUM as

the sampling methods. Our experimental results show that the performance of DEUM

was significantly better than that of other EDAs as well as that of a local Gibbs sampler

algorithm.

The MCMC algorithm such as Metroplis sampler and Gibbs sampler are effective ways

to sample from a probability distribution. They are particularly useful in DEUM as can

exploit the temperature in the Gibbs distribution to achieve a better convergence of the

algorithm. These methods may well serve as a basis of sampling technique for future

DEUM algorithms.

132



Chapter 8

Future Work

In this chapter, we outline some of the prospective future work that has been identified

from our research study. This can be categorised into four groups:

1. Extension to current DEUM algorithms

2. Research on performance improvement

3. Theoretical works

4. Application

8.1 Extension to current DEUM algorithms

This line of research concerns the exploration of future DEUM algorithms, either by in-

troducing new components to the algorithm, or by improving its existing components.

8.1.1 Incorporate a structure learning Algorithm to DEUM

Let us recall the three major steps of EDAs that are different from the GA:

133



1. Learn the structure of a probabilistic model

2. Estimate the parameters of a probabilistic model

3. Sample the estimated model

The DEUM algorithms implemented so far only have the last two steps and assume the

structure of the model to be fixed. The immediate extension for DEUM algorithms would

be to incorporate a structure learning algorithm. This would allow them to be applied to

a wider range of multivariate optimisation problems. We believe that, the two structure

learning algorithms reviewed in chapter 2: Conditional independence test (Santana, 2005)

and Linkage detection algorithm (Heckendorn & Wright, 2004), can be readily adopted

for this purpose.

8.1.2 Multi-generation scheme in DEUM

Unlike, the two univariate DEUM, DEUMpv and DEUMd, the bivariate Is-DEUM only had

a single generation, as was able to find the solution in first generation. However, once we

know how to sample from the distribution, it is always possible to have multi-generation

scheme. There may be various ways to do so. We suggest two of the immediate ones.

1. By direct sampling : The straight forward way to implement multi-generation

scheme in Is-DEUM is to sample M solutions using a Gibbs (or Metropolis) sampler,

and create the next population to replace the parent P . However, it may be necessary

to explicitly maintain the diversity in the population as Gibbs sampler may generate

increasing number of similar solutions. There are various ways to do so. One way

is to use different nitching techniques and make sure that the useful information

in the parent population is not lost while replacing the parent population with new

solutions. Another way is to limit the Gibbs sampler to only iterate for small number

of iteration. i.e., to sample solution from some intermediate distribution which is,

at least for first few generations, neither closer to uniform nor closer to a global

optimal. This would also help to maintain the variation in the population.

134



2. By maintaining a probability vector: Another way is to use the probability

vector to maintain and sample the distribution. The idea is to generate a solution

x = {x1, x2, .., xn} using Gibbs sampler and update each element of probability

vector p = {p1, p2, .., pn} towards the direction pointed by values in the solution, i.e,

if xi = 1 then increase pi towards some fixed learning rate. Similarly if xi = 0 then

decrease pi. There may be various ways to obtain x that update the probability

vector. One example is to run the Gibbs sampler on the best solution in the current

population. This makes sure that at least as best solution is generated. Another

way is to generate a population of solutions and choose the one with the best fitness.

8.1.3 Region based decomposition of Energy in Gibbs Distribution

DEUM builds a model of fitness function (MFM) that approximates the energy of the

Gibbs distribution. In chapter 4, we introduced two different MFM, for a single MRF

structure G:

1. Minimal MFM considering only the maximal cliques in G

2. Complete MFM considering all maximal cliques, their sub cliques including sin-

gleton cliques in G

However, various other intermediate models can be constructed for a single structure

depending on considered cliques and sub-cliques. Deciding between all possible models

could become a time consuming process, particularly when a structure contains more of

the higher order cliques. This, so far, did not pose any problem to the proposed DEUM

algorithms, as they assumed either a univariate structure or a fixed bivariate structure.

The immediate solution to this problem is to restrict the DEUM algorithms to use either

minimal MFM or complete MFM.

Alternatively, the region based decomposition approach can be used to decide on which

cliques to consider in MFM. The Kikuchi approximation approach to estimate and sample

135



the MRF reviewed in chapter 3 are based on the region based decomposition of cliques.

The general idea behind region based decomposition is to find the set of maximal cliques

and sub cliques that validly factorises the jpd 1. Once we find the set of cliques, a potential

function can be assigned to each of them to construct an MFM. MFM is then fitted to a

population in order to approximate the parameters of the MRF.

8.1.4 Selection in DEUM

One of the distinct properties of DEUM algorithm is that, they use fitness to model the

distribution and threfore can perform optimisation even without using an explicit selection

operator 2. In other words, a complete parent population, D = P , can be used to estimate

the probability distribution, and then sampled to evolve the better solutions. However, it

is yet to be clarified when selection should be applied and when it should not be applied.

For all the experiments presented in this thesis, we empirically determined the size of D.

Further research should be carried out in this area. This may lead to an important result

for EDA, i.e. the elimination of selection size parameter from the algorithm.

8.1.5 Metropolis sampler with temperature

The zero Temperature Metropolis Method (ZTM) used in Is-DEUM is one of the simplest

variant of the metropolis sampling algorithm. ZTM mutates a variable in the solution

x to get a mutated solution x′. Then, accepts the mutated solution if energy for x′ is

less than that of x. In other words, zero temperature metropolis sampler sets x → x′ if

∆U = U(x′)− U(x) ≤ 0.

It would be interesting to see the performance of Is-DEUM with a Metropolis method that

maintains a temperature coefficient. The mutated solution could then be accepted with a
1More detail is given in chapter 3
2This property has been described in chapter 5, section 5.3.1

136



probability p(x′), where

p(x′) =

 1 if ∆U ≤ 0

e−∆U/T if ∆U > 0

Here, temperature T, as in Gibbs sampler, could be varied in order to control the conver-

gence of the algorithm.

8.1.6 Research on different ways to numerically define the clique poten-

tial functions

So far, we have defined the clique potential functions as the product of variables in the

clique and a coefficient associated with them (for examples, see (4.10) and (4.14)). How-

ever, it is possible to define the potential functions in any desired way. For example, it

may be beneficial to define the potential functions, such that they models some aspect of

the fitness function, which may result in better approximation of distribution. Further

research can be done in this area.

8.1.7 Clique based mutation to minimise Energy in Gibbs distribution

The Zero Temperature Metropolis method (Figure 7.2) presented in chapter 7, and used

by Is-DEUM, only had a single bit mutation scheme, i.e., in each iteration it chooses

the configuration of a bit that minimises the energy U(x). However, we could use a

multi bit mutation scheme for metropolis sampling. The idea is to check the effect of all

2k configuration of clique (where k is the clique size) in the U(x) and choose one that

minimises it. Although the computational cost of this task is exponential to the size of

the maximum clique in structure G, it is still an attainable goal.

In context of EDAs, a similar approach, known as Building Blocks-wise mutation, has

been previously introduced by (Sastry et al., 2004; Sastry & Goldberg, 2004). They use

the structure of the model to identify the configuration of each clique that maximises the

137



fitness function f(x). The clique based metropolis sampling to minimise energy, however,

will be computationally less expensive than their approach as the energy, U(x), here is the

linear approximation of the fitness, i.e. −ln(f(x)) = U(x) =
∑
ψi(ci), and therefore does

not require the costly fitness evaluation. Rather, it will only require the calculation of the

difference in two energies, which involves calculation of the potential functions containing

only the mutated variables. This has been demonstrated in equations (7.9) and (7.10).

8.2 Research on performance improvement

This line of research concerns the implementation of various performance improvement

techniques that have been either previously exploited in different EA, or are specific to

the DEUM algorithm.

8.2.1 Research in more efficient way to estimate MRF parameters

The Singular Value Decomposition (SVD) technique used in DEUM algorithms to solve

the system of linear equations is a computationally expensive process. Here, the time

grows polynomially to the number of MRF parameters in the model. Therefore, further

research should be done in order to find the efficient way to estimate the MRF parameters.

One solution to this may be the use of some non numeric techniques such as heuristic

based optimisations to solve the system of equations.

Another solution may be to decompose the matrix A in system of linear equations, (4.24)

into smaller matrixes and solve them individually. It can be possible for the case, where

the problem can be decomposed into a number of sub problems. Estimating a separate

model for each of the sub problem would significantly reduce the number of parameters

to compute at once, and therefore would significantly reduce the computational time to

solve the system of equations.

138



8.2.2 Different cooling schedules

Due to the use of Gibbs distribution approach to factorise jpd, temperature plays an

important role in DEUM algorithms. We use temperature to balance between exploration

and exploitation of the search space in two DEUM algorithms: DEUMd and Is-DEUMg.

Both of these algorithms use a cooling scheme for this propose. However, the cooling

scheme used so far is of proportionate nature. i.e., in each iteration, the temperature is

decreased with a fixed ratio specified by the user, which is proportional to the number of

current iteration (see DEUMd workflow in Figure 6.1). However, there may be various

other possible cooling schemes, such as linear scheme, quadratic scheme, or exponential

scheme, that may be similarly applied in these algorithms. Further research can be done

to find the effect of different cooling schedule in the performance of these algorithms.

8.2.3 Performance enhancement using different GA techniques

There are several well established performance enhancement techniques in GA that can

be readily adopted in DEUM algorithms. They include:

1. Replacement strategy: There are various replacement strategy in GA that is used

to improve the efficiency of the algorithm. They include various elitism strategies (Davis,

1991), restricted tournament replacements (Pelikan & Goldberg, 2000), and so on. They

can be easily adopted in DEUM algorithms.

2. Hybridisation: Hybridisation of GAs with other search techniques have been found

to be very effective in improving the optimisation quality. Specifically, the local search

algorithms, such as various hill climbers, greedy algorithms, tabu search has been widely

incorporated in GA. Similar hybridisation techniques can be implemented in DEUM.

3. Parallelisation: Another highly explored area in EA research is their parallelisation.

Because EA are a population based optimisation techniques, parallelisation can be natu-

rally implemented and are shown to work extremely well. Parallel version of several EDAs

139



has also been proposed (Lozano et al., 2001a; Mendiburu et al., 2005; Lobo et al., 2005;

Ocenasek & Schwarz, 2000; Ocenasek, 2002; Ocenasek et al., 2003). DEUM could also

benefit from such approach.

4. Prior knowledge utilisation: One of the advantages of EDA is that the prior

knowledge about the problem decomposition can be easily incorporated in their model

of distribution. This may result in better estimation of distribution and thus in better

performance of the algorithm. We have shown this in DEUM by applying it to the Ising

spin glass problem, where the information about the variable interaction was copied to

the model of distribution. A similar approach may be applied for the problems where the

variable dependency is known in advance.

8.3 Theoretical works

One of the motivation behind the emergence of EDA was to achieve better and more

rigorous theoretical analysis of the evolutionary process (Larrañaga & Lozano, 2002).

The work on DEUM so far is based on empirical analysis of its performance in various

situations. The theoretical analysis of DEUM would be an interesting area to follow.

Amongst other, they could include analysis of DEUM convergence in different situations,

analysis of population size requirements and their scalability.

8.4 Application

Although recent years have seen growing interest in EDA research, the application of EDAs

in real world optimisation problems is still an emerging area of research. Our experimental

results show that, for the wide range of tested problems, DEUM can significantly reduce

the number of fitness evaluations needed to find the solution and often results in better

quality of the found solution. It gives a strong motivation to apply DEUM to real world

problems where the less fitness evaluation and improved solution quality is likely to be the

140



most important requirements.

141



Chapter 9

Conclusion

This chapter highlights some of the important contributions made by our research and

concludes the thesis.

9.1 Important contributions

The following contributions are identified as important ones among the numerous outcomes

from our research.

1. Review of Probabilistic Graphical Models in EDA: A review of Probabilis-

tic Graphical Models in context of EDA has been presented. Specifically, various

techniques to estimate a MRF in EDAs have been described.

2. MRF Fitness Model: A general model of fitness function, called MRF Fitness

Model (MFM), has been established, which relates the energy of the Gibbs dis-

tribution with the fitness of the solution and completely specifies the probability

distribution.

3. MRF parameter estimation: Least square fitting technique has been proposed

to estimate the parameter of the MRF.

142



4. DEUM: A general framework of EDA, called Distribution Estimation using MRF

(DEUM), has been introduced using the proposed approach to estimate the MRF.

5. DEUMpv: A univariate version of DEUM, called DEUMpv, has been presented

using a probability vector approach to sampling the MRF.

6. DEUMd: An extension to DEUMpv, called DEUMd, has been introduced that

replaced probability vector approach to sampling in DEUMpv with a direct Gibbs

distribution sampling approach.

7. Is-DEUM: A bivariate variant of DEUM, called Is-DEUM, has been proposed and

applied to the well known Ising spin glass problems. Two versions of Is-DEUM

have been proposed using two different sampling techniques: 1) Is-DEUMm with a

Metropolis sampling technique and 2) Is-DEUMg with a Gibbs sampling technique.

8. Experimental Analysis: Detail experimental analysis has been performed to test

the performance of DEUM algorithms in a wide range of optimisation problems.

Comparison has been made with other EDAs and validated using different signifi-

cance testing techniques.

9.2 General conclusion

In this thesis, we have presented DEUM as a general framework for an EDA based on

Markov Random Field approach to estimate and sample the distribution. The key to

the DEUM success lies on the effective exploitation of two main property of the Gibbs

distribution, which also distinguishes them from other EDAs. They follow:

1. Modelling fitness to estimate MRF parameters: The behaviour of the system

using Gibbs distribution completely depends on the energy function, which further

depends on the chosen clique potential functions defined on the structure of the

MRF. The described fitness modelling approach to estimate the MRF exploits this

property by building a model of fitness function, MFM, over the chosen clique poten-

tial functions. The model is then fitted to the population of solutions to estimate the

143



MRF parameters. The result is that the fitness is now incorporated in the variation

part of the evolution, which allows DEUM to perform optimisation even without

using a traditional selection operator. This is a distinct characteristic of DEUM,

which has a significant contribution to the performance of these algorithms.

2. Exploitation of Temperature: The temperature coefficient in Gibbs distribution

can be manipulated to observe the desired system behaviour. Particularly, with high

temperature, the distribution is closer to be uniform and with lower temperature, it

concentrates around some global optima. This is exploited in several DEUM algo-

rithms. Particularly, the DEUMd starts with a high temperature, i.e., start with a

near uniform distribution, and, as iteration continues, gradually cools the temper-

ature down to minimum i.e. gradually converges the distribution to some optima.

The result is the effective exploration of the search space and better performance of

the algorithm. Is-DEUMg also takes similar approach by using a cooling schedule in

the Gibbs sampling algorithm.

A number of experiments has been preformed to test the performance of DEUM algorithms

on range of optimisation problems. Results show that, for most of the tested problems,

the DEUM algorithms significantly outperformed other EDAs, both in terms of number

of fitness evaluations and in terms of the quality of the found solutions. Although, the

use of least square fitting technique to estimate the parameter may make these algorithms

computationally more expensive than other EDAs using frequency counting approach, the

better quality of solution and the less fitness evaluation may account to be more important

for many real world problems, and therefore DEUM algorithms can have significant impact

in such problems.

To conclude the thesis, we state that the proposed fitness modelling approach to estimating

and sampling the MRF in DEUM has a great potential for solving optimisation problems.

The thesis has introduced several algorithms based on this general framework and suc-

cessfully applied in many optimisation problems. The results obtained are promising and

can have important implications in general search and optimisation research. It also paves

the way for wider exploration of other promising EDAs based on this framework.

144



Bibliography

Baluja, S. (1994). Population-based incremental learning: A method for integrating genetic

search based function optimization and competitive learning,. Tech. Rep. CMU-CS-94-

163, Pittsburgh, PA.

Baluja, S. (1995). An empirical comparison of seven iterative and evolutionary function

optimization heuristics. Tech. Rep. CMU-CS-95-193, Carnegie Mellon University.

Baluja, S. & Davies, S. (1997). Using optimal dependency-trees for combinatorial optimiza-

tion: Learning the structure of the search space. In Proceedings of the 1997 International

Conference on Machine Learning .

Baluja, S. & Davies, S. (1998). Fast probabilistic modeling for combinatorial optimization.

In AAAI-98 .

Bengoetxea, E., Larrañaga, P., Bloch, I., Perchant, A. & Boeres, C. (2000). Inexact graph

matching using learning and simulation of Bayesian networks. An empirical comparison

between different approaches with synthetic data. In Workshop Notes of CaNew2000:

Workshop on Bayesian and Causal Networks: From Inference to Data Mining , four-

teenth European Conference on Artificial Intelligence, ECAI2000. Berlin.

Bengoetxea, E., Larrañaga, P., Bloch, I. & Perchant, A. (2001a). Image recognition with

graph matching using estimation of distribution algorithms. In Proceedings of the Med-

ical Image Understanding and Analysis 2001 .

Bengoetxea, E., Larrañaga, P., Bloch, I. & Perchant, A. (2001b). Solving graph matching

with EDAs using a permutation–based representation. In P. Larrañaga & J.A. Lozano,

145



eds., Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation,

Kluwer Academic Publishers.

Berny, A. (2000). An adaptive scheme for real function optimization acting as a selection

operator. In X. Yao, ed., First IEEE Symposium on Combinations of Evolutionary

Computation and Neural Networks.

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with

discussions). Journal of the Royal Statistical Society , 36, 192–236.

Bethe, H.A. (1935). Statistical theory of superlattices. Proc. Roy. Soc. London A, 150–552.

Born, C. & Kerbosch, J. (1973). Algorithms 457 - finding all cliques of an undirected

graph. Communications of the ACM , 16(6), 575–577.

Bosman, P.A. (2003). Design and Application of Iterated Density-Estimation Evolutionary

Algorithms. Ph.D. thesis, Universiteit Utrecht, Utrecht, The Netherlands.

Brown, D.F., Garmendia-Doval, A.B. & McCall, J.A.W. (2002). Markov Random Field

Modelling of Royal Road Genetic Algorithms. Lecture Notes in Computer Science, 2310,

65–78.

Brush, S.G. (1967). History of the lenz-ising model. Rev. Mod. Phys., 39.

Buntine, W.L. (1991). Theory refinement of Bayesian networks. In Uncertainty in Artificial

Intelligence, 52–60.

Chickering, D., Heckerman, D. & Meek, C. (1997). A bayesian approach to learning

bayesian networks with local structure. In Proceedings of Thirteenth Conference on

Uncertainty in Artificial Intelligence, 80–89, also appears as Technical Report MSR-

TR-97-07, Microsoft Research, August, 1997.

Chickering, D.M., Geiger, D. & Heckerman, D. (1994). Learning Bayesian Networks is

NP-Hard. Tech. Rep. MSR-TR-94-17.

Chow, C. & Liu, C. (1968). Approximating discrete probability distributions with depen-

dence trees. IEEE transactions on Information Theory , 14, 462–467.

146



Cooper, G.F. & Herskovits, E.A. (1992). A bayesian method for the induction of proba-

bilistic networks from data. Machine Learning , 9, 309–347.

Davis, L., ed. (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York.

de Bonet, J.S., Isbell, C.L., Jr. & Viola, P. (1997). MIMIC: Finding optima by estimating

probability densities. In M.C. Mozer, M.I. Jordan & T. Petsche, eds., Advances in Neural

Information Processing Systems, vol. 9, The MIT Press.

de Campos, L.M., Gámez, J.A., Larrañaga, P., Moral, S. & Romero, T. (2001). Partial

abductive inference in Bayesian networks: an empirical comparison between GAs and

EDAs. In P. Larrañaga & J.A. Lozano, eds., Estimation of Distribution Algorithms. A

New Tool for Evolutionary Computation, Kluwer Academic Publishers.

de la Maza, M. & Tidor, B. (1993). An analysis of selection procedures with particular

attention paid to proportional and Boltzmann selection. In S. Forrest, ed., Proc. of

the Fifth International Conference on Genetic Algorithm, 124–131, Morgan Kaufmann,

Urbana-Champaign, IL.

de la Ossa, L., Gámez, J.A. & Puerta, J.M. (2004). Migration of Probability Models

Instead of Individuals: An Alternative When Applying the Island Model to EDAs. In

Parallel Problem Solving from Nature VIII , 242–252, Springer.

Droste, S. (2005). Not all linear functions are equally difficult for the compact genetic

algorithm. In In proceedings of Genetic and Evolutionary Computation COnference

(GECCO 2005), 679–686.

Etxeberria, R. & Larrañaga, P. (1999). optimization with bayesian networks. In Proceed-

ings of the Second Symposium on Artificial Intelligence. Adaptive Systems. CIMAF 99.,

332339, Cuba.

Fogel, L.J. (1962). Autonomous automata. Industrial Research, 4, 14–19.

Galić, E. & Höhfeld, M. (1996). Improving the generalization performance of multi-layer-

perceptrons with population-based incremental learning. In Parallel Problem Solving

from Nature. PPSN-IV , 740–750.

147



Geman, S. & Geman, D. (1987). Stochastic relaxation, gibbs distributions and the bayesian

restoration of images. In M.A. Fischler & O. Firschein, eds., Readings in Computer

Vision: Issues, Problems, Principles, and Paradigms, 564–584, Kaufmann, Los Altos,

CA.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning .

Addison-Wesley.

Goldberg, D.E., Korb, B. & Deb, K. (1989). Messy genetic algorithms: Motivation, analy-

sis and first results. Complex Systems, 3, 493–530.

Golub, G. & Van Loan, C. (1989). Matrix Computations. Baltimore, MD, 2nd edn.

González, C., Lozano, J. & Larrañaga, P. (2001). Analyzing the PBIL algorithm by means

of discrete dynamical systems. Complex Systems, 12.

González, C., Rodŕıguez, J.D., Lozano, J. & Larrañaga, P. (2003). Analysis of the Uni-

variate Marginal Distribution Algorithm modeled by Markov chains. Lectur Notes in

Computer Science, 2686, 510–517.

Grefenstette, J.J. (1986). Optimization of control parameters for genetic algorithms. IEEE

Transactions on Systems, Man, and Cybernetics, 16, 122–128.

Hammersley, J.M. & Clifford, P. (1971). Markov fields on finite graphs and lattices. Un-

published .

Harik, Cantu-Paz, Goldberg & Miller (1997). The gambler’s ruin problem, genetic algo-

rithms, and the sizing of populations. In IEEECEP: Proceedings of The IEEE Confer-

ence on Evolutionary Computation, IEEE World Congress on Computational Intelli-

gence.

Harik, G. (1994). Finding multiple solutions in problems of bounded difficulty. Tech. Rep.

IlliGAL Report No. 94002, University of Illinois at Urbana-Champaign, Urbana, IL.

Harik, G. (1997). Learning gene linkage to efficiently solve problems of bounded difficulty

using genetic algorithms. Ph.D. thesis.

148



Harik, G. (1999). Linkage learning via probabilistic modeling in the ECGA. Tech. Rep.

IlliGAL Report No. 99010, University of Illinois at Urbana-Champaign.

Harik, G.R., Lobo, F.G. & Goldberg, D.E. (1999). The compact genetic algorithm. IEEE-

EC , 3, 287.

Heckendorn, R.E. & Wright, A.H. (2004). Efficient linkage discovery by limited probing.

Evolutonary Computation, 12, 517–545.

Heckerman, D., Geiger, D. & Chickering, D.M. (1994). Learning bayesian networks: The

combination of knowledge and statistical data. In KDD Workshop, 85–96.

Henrion, M. (1988). Propagating uncertainty in bayesian networks by probabilistic logic

sampling. In J.F. Lemmer & L.N. Kanal, eds., Uncertainty in Artificial Intelligence 2 ,

149–163, North-Holland, Amsterdam.

Höhfeld, M. & Rudolph, G. (1997). Towards a theory of population-based incremental

learning. In Proceedings of the 4th International Conference on Evolutionary Computa-

tion, 1–5, IEEE Press.

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan

Press, Ann Arbor, MI.

Hoos, H.H. & Stutzle, T. (1999). Towards a characterisation of the behaviour of stochastic

local search algorithms for SAT. Artificial Intelligence, 112, 213–232.

Inza, I., Larrañaga, P. & R. Etxeberria, B.S. (2000). Feature subset selection by Bayesian

networks based optimization. Artificial Intelligence, 123, 157–184.

Inza, I., Larrañaga, P. & Sierra, B. (2001a). Estimation of Distribution Algorithms for

feature subset selection in large dimensionality domains. In H. Abbass, R. Sarker &

C. Newton, eds., Data Mining: A Heuristic Approach, Idea Groups Publishing.

Inza, I., Larrañaga, P. & Sierra, B. (2001b). Feature subset selection by Estimation of Dis-

tribution Algorithms. In P. Larrañaga & J.A. Lozano, eds., Estimation of Distribution

Algorithms. A New Tool for Evolutionary Computation, Kluwer Academic Publishers.

149



Inza, I., Merino, M., Larrañaga, P., Quiroga, J., Sierra, B. & Girala, M. (2001c). Feature

subset selection by population-based incremental learning. A case study in the survival

of cirrhotic patients with TIPS. Artificial Intelligence in Medicine.

Jensen, F.V. (1996). Introduction to Bayesian Networks. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA.

Jensen, F.V. (2001). Bayesian Networks and Decision Graphs. Springer-Verlag New York,

Inc., Secaucus, NJ, USA.

Jensen, F.V. & Jensen, F. (1994). Optimal junction trees. In Uncertainty and Artificial

Intelligence: Proceedings of the Tenth Conference, Morgan Kaufmann, San Mateo, CA.

Jordan, M.I., ed. (1998). Learning in Graphical Models. NATO Science Series, Kluwer

Academic Publishers, Dordrecht.

Jordan, M.I. (2004). Graphical models. Statistical Science (Special Issue on Bayesian Sta-

tistics), 19, 140–155.

Jordan, M.I., Ghahramani, Z., Jaakkola, T. & Saul, L.K. (1999). An introduction to

variational methods for graphical models. Machine Learning , 37, 183–233.

Kargupta, H. (1996). The gene expression messy genetic algorithm. In Proceedings of

the 1996 IEEE International Conference on Evolutionary Computation, 631–636, IEEE

Press.

Kikuchi, R. (1951). A Theory of Cooperative Phenomena. Physical Review , 81, 988–1003.

Kindermann, R. & Snell, J.L. (1980). Markov Random Fields and Their Applications.

AMS.

Kullback, S. & Leibler, R.A. (1951). On information and sufficiency. Annals of Mathemat-

ical Statistics, 22, 79–86.

Larrañaga, P. & Lozano, J.A. (2002). Estimation of Distribution Algorithms: A New Tool

for Evolutionary Computation. Kluwer Academic Publishers.

150



Larrañaga, P., Etxeberria, R., Lozano, J. & Peña, J. (1999). Optimization by learning

and simulation of bayesian and gaussian networks. Tech. Rep. EHU-KZAA-IK-4/99,

University of the Basque Country.

Larrañaga, P., Etxeberria, R., Lozano, J.A. & Peña, J.M. (2000). Combinatorial optimiza-

tion by learning and simulation of Bayesian networks. In Proceedings of the Sixteenth

Conference on Uncertainty in Artificial Intelligence, 343–352, Stanford.

Lauritzen, S.L. (1996). Graphical Models. Oxford University Press.

Lauritzen, S.L. & Spiegelhalter, D.J. (1988). Local computations with probabilities on

graphical structures and their application to expert systems. Journal of the Royal Sta-

tistical Society B , 50, 157–224.

Li, S.Z. (1995). Markov Random Field modeling in computer vision. Springer-Verlag.

Lobo, F.G., Lima, C.F. & Mrtires, H. (2005). Massive parallelization of the compact

genetic algorithm. In B. Ribeiro, R.F. Albrechet, A. Dobnikar, D.W. Pearson & N.C.

Steele, eds., In proceedings of the International Conference on Adaptive and Natural

computiNG Algorithms (ICANNGA 2005), Springer-Verlag, Wien, Coimbra, Portugal.

Lozano, J.A., Sagarna, R. & Larrañaga, P. (2001a). Parallel Estimation of Distribution

Algorithms. In P. Larrañaga & J.A. Lozano, eds., Estimation of Distribution Algorithms.

A New Tool for Evolutionary Computation, 129–145, Kluwer Academis Publishers.

Lozano, J.A., Sagarna, R. & Larrañaga, P. (2001b). Solving job scheduling with Estima-

tion of Distribution Algorithms. In P. Larrañaga & J.A. Lozano, eds., Estimation of

Distribution Algorithms. A New Tool for Evolutionary Computation, 231–242, Kluwer

Academis Publishers.

Marascuilo, L.A. & McSweeney, M. (1977). Nonparametric and distribution-free methods

for the social sciences. Wadsworth Publishing, Belmont, CA.

Mendiburu, A., Lozano, J.A. & Miguel-Alonso, J. (2005). Parallel implementation of edas

based on probabilistic graphical models. IEEE Transactions onn Evolutionary Compu-

tation, 9, 406–423.

151



Metropolis, N. (1953). Equations of state calculations by fast computational machine.

Journal of Chemical Physics, 21, 1087–1091.

Michalewicz, Z. (1996). Genetic Algorithm +Data Structures = Evolution Programs.

Springer-Verlag, New York.

Mitchell, M. (1997). An Introduction To Genetic Algorithms. MIT Press, Cambridge,

Massachusetts.

Mitchell, M., Holland, J.H. & Forrest, S. (1994). When will a genetic algorithm outperform

hillclimbing? In J.D. Cowan, G. Tesauro & J. Alspector, eds., Advances in Neural

Information Processing Systems 6 , Morgan Kaufmann.

Mühlenbein, H. (1994). The science of breeding and its application to the breeder genetic

algorithm. Evolutionary Computation, 1, pp. 335–360.

Mühlenbein, H. (1998). The equation for response to selection and its use for prediction.

Evolutionary Computation, 5, 303–346.

Mühlenbein, H. & Mahnig, T. (1999a). Convergence theory and application of the fac-

torized distribution algorithm. Journal of Computing and Information Technology , 7,

19–32.

Mühlenbein, H. & Mahnig, T. (1999b). FDA - A scalable evolutionary algorithm for the

optimization of additively decomposed functions. Evolutionary Computation, 7, 353–

376.

Mühlenbein, H. & Mahnig, T. (2001a). Mathematical analysis of evolutionary algorithms

for optimization. In A. Rodriguez, M. Ortiz & R. Santana, eds., Proceedings of the

Third Internatinal Symposium on Adaptive Systems, 166–185, Institute of Cybernetics,

Mathematics and Physics (ICIMAF), Cuba.

Mühlenbein, H. & Mahnig, T. (2001b). A new adaptive boltzmann selection schedule sds.

In Proceedings of the 2001 Congress on Evolutionary Computation.

Mühlenbein, H. & Paaß, G. (1996). From recombination of genes to the estimation of

distributions: I. binary parameters. In H.M. Voigt, W. Ebeling, I. Rechenberg & H.P.

152



Schwefel, eds., Parallel Problem Solving from Nature – PPSN IV , 178–187, Springer,

Berlin.

Mühlenbein, H., Mahnig, T. & Ochoa, A.R. (1999). Schemata, distributions and graphical

models in evolutionary optimization. Journal of Heuristics, 5, 215–247.

Murphy, K. (2002). Dynamic Bayesian Networks: Representation, Inference and Learning .

Ph.D. thesis, University of California, Berkeley.

Ocenasek, J. (2002). Parallel Estimation of Distribution Algorithms. Ph.D. thesis, Faculty

of Information Technology, Brno University of Technology, Brno, Czech Republic.

Ocenasek, J. & Schwarz, J. (2000). The parallel bayesian optimization algorithm. In Pro-

ceedings of the European Symposium on Computational Inteligence, Physica-Verlag , 61–

67, Kosice, Slovak Republic.

Ocenasek, J., Schwarz, J. & Pelikan, M. (2003). Design of multithreaded estimation of

distribution algorithms. Proceedings of the Genetic and Evolutionary Computation Con-

ference (GECCO-2003), 1247–1258.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman Pub-

lishers, Palo Alto, CA.

Pelikan, M. (2002). Bayesian optimization algorithm: From single level to hierarchy . Ph.D.

thesis, University of Illinois at Urbana-Champaign, Urbana, IL, also IlliGAL Report No.

2002023.

Pelikan, M. & Goldberg, D.E. (2000). Hierarchical problem solving by the bayesian opti-

mization algorithm. IlliGAL Report No. 2000002, Illinois Genetic Algorithms Labora-

tory, University of Illinois at Urbana-Champaign, Urbana, IL.

Pelikan, M. & Goldberg, D.E. (2003). Hierarchical BOA solves Ising spin glasses and

MAXSAT. Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO-2003), 1271–1282, also IlliGAL Report No. 2003001.

Pelikan, M. & Mühlenbein, H. (1999). The bivariate marginal distribution algorithm. In

153



R. Roy, T. Furuhashi & P.K. Chawdhry, eds., Advances in Soft Computing - Engineering

Design and Manufacturing , 521–535, Springer-Verlag, London.

Pelikan, M., Goldberg, D.E. & Cant’u-Paz, E. (1999a). BOA: The Bayesian Optimization

Algorithm. In W. Banzhaf et al., ed., Proceedings of the Genetic and Evolutionary

Computation Conference GECCO99 , vol. I, 525–532, Morgan Kaufmann Publishers,

San Fransisco, CA.

Pelikan, M., Goldberg, D.E. & Lobo, F. (1999b). A survey of optimization by building and

using probabilistic models. Tech. Rep. 99018, Illinois Genetic Algorithms Lab, UIUC,

Urbana, IL.

Pelikan, M., Ocenasek, J., Trebst, S., Troyer, M. & Alet, F. (2004). Computational com-

plexity and simulation of rare events of ising spin glasses. Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO-2004), 36–47.

Pelikan, M., Sastry, K. & Goldberg, D. (2005a). Multiobjective hboa, clustering, and scal-

ability. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-

2005), 663–670, also IlliGAL Report No. 2005005.

Pelikan, M., Sastry, K. & Goldberg, D.E. (2005b). Sporadic model building for efficiency

enhancement of hboa. IlliGAL Report No. 2005026, Illinois Genetic Algorithms Labo-

ratory, University of Illinois at Urbana-Champaign, Urbana, IL.

Petrovski, A., Shakya, S. & McCall, J. (2006). Optimising cancer chemotherapy using an

estimation of distribution algorithm and genetic algorithms. In proceedings of Genetic

and Evolutionary Computation COnference (GECCO 2006) (in press), ACM, seattle,

USA.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. (1993). Numerical Recipes

in C: The Art of Scientific Computing . Cambridge University Press, Cambridge, UK,

2nd edn.

Preston, C. (1976). Random fields. Lecture Notes in Mathematics, 534.

Rechenberg, I. (1973). Evolutionstrategie - Optimierung technischer Systeme nach Prinzip-

ien der biologischen Evolution. Formman-Holzboog, Stuttgart.

154



Rissanen, J. (1978). Modelling by shortest data description. Automatica, 14, 465–471.

Robles, V., de Miguel, P. & Larrañaga, P. (2001). Solving the travelling salesman problem

with Estimation of Distribution Algorithms. In P. Larrañaga & J.A. Lozano, eds., Esti-

mation of Distribution Algorithms. A New Tool for Evolutionary Computation, Kluwer

Academic Publishers.

Roure, J., Sangüesa, R. & Larrañaga, P. (2001). Partitional clustering by means of Esti-

mation of Distribution Algorithms. In P. Larrañaga & J.A. Lozano, eds., Estimation of

Distribution Algorithms. A New Tool for Evolutionary Computation, Kluwer Academic

Publishers.

Sagarna, R. & Larrañaga, P. (2001). Solving the knapsack problem with Estimation of Dis-

tribution Algorithms. In P. Larrañaga & J.A. Lozano, eds., Estimation of Distribution

Algorithms. A New Tool for Evolutionary Computation, Kluwer Academis Publishers.

Sagarna, R. & Lozano, J.A. (2005). On the performance of Estimation of Distribution

Algorithms applied to software testing. Applied Artificial Intelligence, 19, 457–489.

Sagarna, R. & Lozano, J.A. (2006). Scatter search in software testing, comparision and

collaboration with Estimation of Distribution Algorithms. Europian Journal of Opera-

tional Research, 169, 392–412.

Santana, R. (2003a). A markov network based factorized distribution algorithm for opti-

mization. In Proceedings of the 14th European Conference on Machine Learning (ECML-

PKDD 2003), vol. 2837, 337–348, Springer-Verlag, Dubrovnik, Croatia.

Santana, R. (2003b). Probabilistic modeling based on undirected graphs in Estimation Dis-

tribution Algorithms. Ph.D. thesis, Institute of Cybernetics, Mathematics and Physics,

Havana, Cuba.

Santana, R. (2005). Estimation of Distribution Algorithms with Kikuchi Approximation.

Evolutonary Computation, 13, 67–98.

Santana, R., Larraaga, P. & Lozano, J.A. (2005). Interactions and dependencies in esti-

mation of distribution agorithms. In Proceedings of the 2005 Congress on Evolutionary

Computation (CEC-2005), 1418–1425, IEEE press, Edinburgh, UK.

155



Sastry, K. & Goldberg, D.E. (2004). Designing competent mutation operators via proba-

bilistic model building of neighborhoods. Tech. Rep. 2004006, IlliGAL.

Sastry, K., Goldberg, D.E. & Pelikan, M. (2004). Efficiency enhancement of probabilistic

model building genetic algorithms. Tech. Rep. 2004020, IlliGAL.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 7, 461–464.

Shakya, S., McCall, J. & Brown, D. (2005a). Estimating the distribution in an EDA. In

B. Ribeiro, R.F. Albrechet, A. Dobnikar, D.W. Pearson & N.C. Steele, eds., In proceed-

ings of the International Conference on Adaptive and Natural computiNG Algorithms

(ICANNGA 2005), 202–205, Springer-Verlag, Wien, Coimbra, Portugal.

Shakya, S., McCall, J. & Brown, D. (2005b). Using a Markov Network Model in a Uni-

variate EDA: An Emperical Cost-Benefit Analysis. In proceedings of Genetic and Evo-

lutionary Computation COnference (GECCO2005), 727–734, ACM, Washington, D.C.,

USA.

Shakya, S.K., McCall, J.A.W. & Brown, D.F. (2004a). Preliminary results on Evolution

without Selection. In Proceedings of Postgraduate Research Conference in Electronics,

Photonics, Communications and Networks, and Computing Science (PREP 2004), Hert-

fordshire, UK.

Shakya, S.K., McCall, J.A.W. & Brown, D.F. (2004b). Updating the probability vector

using MRF technique for a Univariate EDA. In E. Onaindia & S. Staab, eds., Proceedings

of the Second Starting AI Researchers’ Symposium, volume 109 of Frontiers in artificial

Intelligence and Applications, 15–25, IOS press, Valencia, Spain.

Shakya, S.K., McCall, J.A.W. & Brown, D.F. (2005c). Incorporating a metropolis method

in a distribution estimation using markov random field algorithm. In proceedings of

IEEE Congress on Evolutionary Computation (IEEE CEC 2005), vol. 3, 2576–2583,

IEEE press, Edinburgh, UK.

Shakya, S.K., McCall, J.A.W. & Brown, D.F. (2006). Solving the ising spin glass problem

using a bivariate eda based on markov random fields. In proceedings of IEEE Congress

156



on Evolutionary Computation (IEEE CEC 2006), IEEE press, Vancouver, Canada (in

press).

Sierra, B., Jiménez, E., Inza, I., Larrañaga, P. & Muruzábal, J. (2001). Rule induction

using Estimation of Distribution Algorithms. In P. Larrañaga & J.A. Lozano, eds., Esti-

mation of Distribution Algorithms. A New Tool for Evolutionary Computation, Kluwer

Academic Publishers.

Smyth, P. (1998). Belief networks, hidden markov models, and markov random fields: a

unifying view. Pattern Recognition Letters.

Spirtes, P., Glymour, C. & Scheines, R. (1991). An algorithm for fast recovery of sparse

causal graphs. Social Science Computer Review , 9, 62–72.

Spirtes, P., Glymour, C. & Scheines, R., eds. (1993). Causation, Prediction and Search.

Lecture Notes in Statistics 81, Springer Verlag, New York.

Suda, R. & Kuriyama, S. (2004). Another preprocessing algorithm for generalized one-

dimensional fast multipole method. Journal of Computational Physics, 195, 790–803.

Whittaker, J. (1990). Graphical Models in applied multivariate Statistics. John Wiley.

Wright, A.H. & Pulavarty, S. (2005). Estimation of distribution algorithm based on linkage

discovery and factorization. In In proceedings of Genetic and Evolutionary Computation

COnference (GECCO 2005), ACM, Washington, D.C., USA.

Yedidia, J.S., Freeman, W.T. & Weiss, Y. (2001). Bethe free energy, kikuchi approxi-

mations and belief propagation algorithms. Tech. Rep. TR2000-26, Mitsubishi Electric

Research Laboratories.

Yedidia, J.S., Freeman, W.T. & Weiss, Y. (2002). Understanding belief propagation and

its generalizations. Tech. Rep. TR2001-22, Mitsubishi Electric Research Laboratories.

Yedidia, J.S., Freeman, W.T. & Weiss, Y. (2005). Constructing free-energy approxima-

tions and generalized belief propagation algorithms. IEEE Transactions on Information

Theory , 51, 2282–2312.

157



Zhang, Q. & Muehlenbein, H. (2004). On the convergence of a class of estimation of

distribution algorithms. IEEE Trans. on Evolutionary Computation, 8.

Zhang, Q. & Mühlenbein, H. (1999). On global convergence of FDA with proportionate

selection. In Second Symposium on Artificial Intelligence. Adaptive Systems. CIMAF

99 , 340–343, la Habana.

158


