
Probabilistic model building Genetic Algorithm (PMBGA):
A survey

Siddhartha K. Shakya

Technical Report.

Computational Intelligence Group,
School of computing, The Robert Gordon University,

Aberdeen, Scotland, UK.
August 2003.

Abstract

Probabilistic model building Genetic Algorithm (PMBGA) is a
novel concept in the field of evolutionary computation which is
motivated by an idea of building a probabilistic model of the
population to preserve important building blocks in subsequent
generation. Growing number of research is being carried out in this
field and different variant of PMBGA s has been purposed. Aim of this
paper is to survey currently existing PMBGAs, categorise them
according to their used probability model, describe their workflow and
analyse their strengths and weakness.

1. Introduction

Genetic Algorithms (GAs) are a class of optimization algorithm motivated from the
theory of natural selection and genetic recombination. It tries to find better solution
by selection and recombination of promising solution. It works well in wide
verities of problem domains. However, sometimes simple selection and crossover
operators are not effective enough to get optimum solution as they might not
effectively preserve important patterns (known as building blocks or partial
solutions) in chromosome. It often happens in the problem domains were the
building blocks are loosely distributed. The search for techniques to preserve
Building Blocks lead to the emergence of new class of algorithm called
Probabilistic Model Building Genetic Algorithm (PMBGA)[Pelikan, Goldberg &
Lobo(1999)] also known as Estimation of Distribution Algorithm (EDA)
[Mühlenbein & Paaß (1996)]. The principle concept in this new technique is to
prevent disruption of partial solutions contained in a chromosome by giving them
high probability of being presented in the child chromosome. It can be achieved by
building a probabilistic model to represent correlation between variables in
chromosome and using build model to generate next population. PMBGA is a
developing area in the field of evolutionary and Genetic algorithms. First purposed
by [Baluja (1994)] with the simplest form on this class and so called Population

Based Incremental Learning (PBIL)(early work on PBIL has been published with
the name Equilibrium Genetic Algorithm (EGA) together with [Jues, Baluja &
Sinclair (1993)]), a dozen or more different variants of PMBGA has been proposed
till the date and are subject of active research for evolutionary and Genetic
Algorithm community. Most of the early PMBGAs were focused on binary
representation of solution vector i.e focused on desecrate problem domain. They
has been later modified to work on continues domain and published with different
names. For simplicity of this paper, we will cons ider PMBGAs on desecrate
domain however continuous variant of most of the algorithms discussed in this
paper has already been purposed.

This paper is a survey of existing PMBGAs. The paper is organised as follows.
Section 2 will describe general frame work of PMBGA and categorize existing
PMBGAs in three different classes according to their used probability model:
Univariate, Bivariate and Multivariate model. Section 3 will describe algorithms
using Univariate Model of probability distribution followed by Section 4 and 5
describing algorithms using Bivariate and Multivariate model respectively. Section
6 will briefly discuss the bottle neck problem for PMBGAs so called problem of
learning probabilistic model. We conclude paper by summarising the achievements
made so far in PMBGAs and giving overview of further work.

2. General PMBGA model

As in traditional GA, all PMBGAs start with generating initial population of size
M. Then N individuals out of M are selected according to chosen selection criteria.
Estimation of distribution is carried out (The joint probability distribution of
individual is calculated) from selected set of individuals and used to sample
offspring to replace parent population.

The general PMBGA is as follows:

1. Generate initial population of size M
2. Select N promising solution where N<=M
3. Calculate joint probability distribution of selected individuals
4. Generate offspring according to the calculated probability distribution

and replace parent.
5. Go to step 2 until termination criteria are meet

Neither crossover nor mutation is involved in the process of generating offspring
and completely replaced by calculation and sampling of probability distribution
(However in some PMBGAs operators similar to mutation is allowed [Baluja
(1994)]). In contrast with implicit processing of building blocks in GA, the process
here is explicit and fully depends on used probability model. The goodness of
probability model is the decisive factor in PMBGA performance. As accurate the

probability model, as effective the algorithm will be in preventing disruption of
important building blocks.

Before going any further, let us first introduce the notations used in this paper. We
follow the approach taken by [Larranaga, Etxeberria, Lozano and Pena (1999)].

Let iX be a random variable and ix be one of its possible value , then

)(ii xX =ρ (or simply)(ixρ) represents the generalised probability density

function (gpdf) over the point ix . Now let { }nXXXX ,...,, 21= be the vector

(individual) with n variables and { }nxxxx ,...,, 21= be the value taken by each
variable of vector X then)(xX =ρ (or simply)(xρ) represents the joint
generalised probability density function (jgpdf) of X . Similarly the generalised
conditional probability density function of variable iX taking value ix given value

jx for the variable jX will be represented as)|(jjii xXxX ==ρ (or

simply)|(ji xxρ).

If the problem domain is discrete, i.e. If variable jX is discrete,

)()(iiii xXpxX ===ρ (or simply)(ixp) is the univariate marginal

distribution of the variable iX . If all the variables in X are discrete then
)()(xXpxX ===ρ (or simply)(xp) will be complete joint probability

distribution. Similarly conditional probability that iX will take value ix given

value jx for the variable jX can be denoted as

)|()|(jjiijjii xXxXpxXxX =====ρ (or simply)|(ji xxp).

In case of continuous jX i.e. in continuous domain,)()(iiii xXfxX ===ρ (or

simply)(ixf) is the density function of the variable iX . If all the variables in X
are continuous then)()(xXfxX ===ρ (or simply)(xf) will be joint density .

Similarly)|()|(jjiijjii xXxXpxXxX =====ρ (or simply)|(ji xxp)

will be conditional density of iX taking value ix given value jx for the

variable jX .

As we will be focusing on discrete domain in this paper, let us describe marginal
and conditional probability in discrete domain in more detail.

We can define univariate marginal distribution of ith variable)(ii xXp = (or

simply)(ixp) as a sum of probability of all vectors in population having ii xX =
which can be written as:

∑ =
=

ii xXXi XPxp
,

)()(

Let SX be the sub vector of X and Sx be the possible set of values taken by SX

then marginal probability)(SS xXp = (or simply)(Sxp) is defined as sum of

probability of all vectors in population having same set of values Sx for sub

vector SX and can be written as

∑ =
=

SS xXXS XPxp
,

)()(

Note that univariate marginal distribution is a simple case of marginal distribution
where sub vector consist of single variable.

Let AX and BX be disjoint sub vectors of X and Ax and Bx be the possible subset
of values taken by them respectively then conditional probability

)|(BBAA xXxXp == (or simply)|(BA xxp) can be calculated as

)(

),(
)|(

B

BA
BA xp

xxp
xxp =

According to the probability theory the complete joint probability distribution of a
set of individuals)(xXPr = or simply)(xPr where each variable

{ }nXXXX ,...,, 21= takes values { }nxxxx ,...,, 21= can be calculated as

)()|().....,...,|(),...,|()(13221 nnnnnr xpxxpxxxpxxxpxP −=

This paper will differentiate PMBGAs according to their used probability model.
We follow the approach taken by previous reviewers and categorise PMBGA into
three different classes by their used probability model: Univariate, Bivariate and
Multivariate Models. [Larranaga, Etxeberria, Lozano & Pena (1999)][Pelikan,
Goldberg & Lobo (1999)]

3. Univariate Model

Algorithms in this category do not consider any dependencies among variable in
individual i.e. considers building blocks of order one. So the joint probability
distribution becomes simply the product of univariate marginal probability of all
variables in individual.

 ∏
=

=
n

i
ixpxP

1

)()(

Where,
n : Total number of variable in an individual (chromosome length).

)(ixp : Univariate marginal probability of ith variable

Due to its simplicity the algorithm in this category are computationally very
efficient and performs excellent in linear problem such as function optimization
where the variables are not significantly interdependent. However these algorithms
fail on complex problems where variables interact with each other. Population
based Incremental Learning (PBIL) [Baluja (1994)], Univariate Marginal
Distribution Algorithm (UMDA) [Mühlenbein & Paaß (1996)] and Compact
Genetic Algorithm (cGA) [Harik, Lobo & Goldberg (1998)] uses univariate model
of probability distribution. Figure 3.1 below is the graphical representation of the
probability model used by these algorithms.

3.1. Population Based Incremental Learning (PBIL)

One of the earliest works in the PMBGA field was Population Based Incremental
Learning (PBIL) algorithm purposed by [Baluja (1994)]. PBIL was motivated by
the idea of combining GAs with Competitive Learning which is often used in
training Artificial Neural Networks. PBIL considers binary representation of
individual. It starts with initialization of a probability vector and maintains and
updates it throughout the whole computation process. General PBIL algorithm
follows:

1. Initialize probability vector { }),......,, 21 npppp = with 0.5 at each
position. Each variable represents probability of value ‘1’ being presented
in same position of child chromosomes.

2. Sample M >> 0 individuals according to probabilities in p and evaluate
them.

3. Update probability vector according to fittest individual
{ }nsssS ,......,, 21= using following rule:

Figure 3.1: Graphical representation of probability model assuming no
dependency among variables.

 () LRsLRpp iii ∗+−∗= 0.1
 where LR is Learning Rate Value.

4. If mutation condition passed, Mutate Probability vector using following
rule:

 () MSorrandomMSpp ii ∗+−∗=)10(0.1
 where MS is amount of mutation to affect the probability vector.

5. Go to step 2 until termination criteria satisfied.

Several different variant of PBIL has been purposed with some simple extension in
method of updating probability vector. One of them is to move probability vector
towards best N individuals, where N << M rather than to move towards single best
individual. Another possibility is to move not only towards best vector but also to
move away from worst individual. Detail work and experiments on PBIL can be
found in [Baluja (1994)]

3.2. Univariate Marginal Distribution Algorithm (UMDA)

Univariate Marginal Distribution Algorithm (UMDA) (extended to more complex
model BMDA, FDA) was first purposed by [Mühlenbein & Paaß (1996)] and is
one of the early work in the field of PMBGAs. UMDA captures general concept of
PMBGA with Univariate model. Different variants of UMDAs has been purposed
and their detail mathematical analysis has been carried out by Mühlenbein and his
colleagues [Mühlenbein & Paaß (1996)],[Mühlenbein (1997)].

General UMDA is as follows:

1. Generate initial population of size M >> 0 randomly
2. Select N promising solution where N<=M
3. Calculate univariate marginal probability)(ixp from selected

individuals
4. Replace parent with M new individuals generated according to the

distribution ∏
=

=
n

i
ixpxP

1

)()(

5. Go to step 2 until termination criteria satisfies

Unlike PBIL which uses univariate marginal probability to update probability
vector, above algorithm relay only on univariate marginal probability)(ixp to
generate new solution. However by introducing memory (probability vector as in
PBIL) it is possible to incrementally change sampling distribution. Following
algorithm so called Simple Univariate Marginal Distribution Algorithm (SUMDA)

(also known Incrimental Univariate Marginal Distribution algorithm IUMDA)
[Mühlenbein (1997)] uses memorised previous sampling distribution (probability
vector) as well as current univariate marginal probability to calculate current
sampling distribution.

1. Initialize probability vector { }npppp ,......,, 21=

2. Generate M individuals according to distribution ∏
=

=
n

i
ipxP

1

)(

3. Select N promising solution and calculate univariate marginal probability
of selected solution)(ixp .

4. Update probability vector according to the following rule
))((iiii pxppp −+= λ

Where, λ is a controlling parameter for convergence. The smaller λ is,
the slower convergence speed. Authors provide evidence that performance
is better when 1=λ

5. Go to step 2 until termination criteria satisfies.

Apart from the updating rule, the procedure of SUMDA is similar to PBIL. The
detail work on UMDA and its extensions can be found in [Mühlenbein & Paaß
(1996)], [Mühlenbein (1997)] and [Mühlenbein, Mahnig, & Rodriguez (1999)].

3.3. Compact Genetic Algorithm (cGA)

Compact Genetic Algorithm (cGA) [Harik, Lobo & Goldberg (1998)] (later
extended to Extended Compact Genetic algorithm (ECGA)) is motivated by the
previous works done in the field of random walk model and also assumes no
overlapping building blocks are contained in chromosome i.e conceders only
building blocks of order 1.

cGA also maintains probability vector as in PBIL. However, unlike PBIL, cGA
samples only two individual at a time, compete them and uses allele value of
winning individual which is distinct from allele value of loosing individual to
update the probability vector leaving probably vector unchanged in the position
where winning and loosing allele contains same value. The process continues until
probability vector converges.

General cGA is shown bellow:

1. Initialize probability vector { }npppp ,......,, 21= with 0.5 at each
position.

2. Sample 2 individuals according to probabilities in p and label according to
their fitness: winner to the fittest and loser to less fit

3. Update probability vector using following rule:
 For i = 1 to n do
 If winner[i] ≠ loser[i] then
 If winner[i]=1 then updateratepp ii +=

 Else updateratepp ii −=

Where updaterate is small value usually defined as 1/population
size.

4. Go to step 2 until probability vector converges.

The detail work on cGA can be found in [Harik, Lobo & Goldberg (1998)].

4. Bivariate Model

Algorithms in this category consider pair wise dependencies among variables in
chromosome i.e. consider the building blocks of order two. Similarly the
probability model becomes more complex than one of univariate model and takes a
form of probabilistic network between variables. This class of algorithm performs
better in problems with pair wise interaction among variable. However fails in the
problems with multiple variable interactions. Mutual Information Maximization for
input clustering (MIMIC) [De Bonet, Isbell and Viola (1997)], Combining
Optimizers with Mutual Information Trees (COMIT) [Baluja & Davies (1997)],
Bivariate Marginal Distribution Algorithm (BMDA) [Pelikan & Mühlenbein
(1999)] uses Bivariate Model of probability Distribution. Graphical representation
of Probabilistic networks used by these algorithms is shown in figure 4.1.

Figure 4.1: Graphical representation of probability model assuming
dependency of order two among variables.

a. Chain model
(MMIC)

b. Tree model
(COMIT)

c. Forest model
(BMDA)

4.1. Mutual Information Maximization for input clustering (MIMIC)

Mutual Information Maximization for input clustering (MIMIC) purposed by [De
Bonet, Isbell and Viola (1997)] uses chain structure of probability distribution
[Figure 4.1 a] which can be written as:

)()|(.).........|()|()(
12121 nnn iiiiiii xpxxpxxpxxpxP

−
=π

where, niii21=π is a permutation of the numbers between 1….n. The

distribution)(xPπ uses π as an ordering for the pair wise condit ional
probabilities. The goal is to find the ordering π such that
distribution)(xPπ matches as closely as possible to the complete joint probability

distribution)(xPr .

)()|()........|()...|()(13221 nnnnnr xpxxpxxxpxxxpxP −= .

Kullback-Liber divergence))(|)((xPxPD r π is used to measures the identically

between)(xPπ and)(xPr . Searching over all possible permutation of π is
computationally hard so MIMIC uses simple greedy algorithm to find π with
optimal divergence, which however does not always gives accurate model. The
detail work on MIMIC can be found in [De Bonet, Isbell and Viola (1997)].

4.2. Combining Optimizers with Mutual Information Trees (COMIT):

Combining Optimizers with Mutual Information Trees (COMIT) purposed by
[Baluja & Davies (1997)] also uses bivariate model of distribution however in
contrast with chain distribution used in MIMIC, COMIT uses tree distribution
[Figure 4.1 b]. Tree structure has advantage over chain structure in the sense that
every chain can be seen as a tree however vice versa is not always true. COMIT
used Maximum Weight Spanning Tree (MWST) algorithm to construct a tree
structure and further uses it as its probability model which can be written as

∏
=

=
n

i
ji xxpxP

1

)|()(

Where, j represents the parent position for i. However in the case when parent of i
th variable does not exist i.e if i is the root variable then)|(ji xxp is generalised

to)(ixp . Experimental results presented by authors shows better performance of
COMIT over MIMIC, PBIL and GA. The detail work on COMIT can be found in
[Baluja & Davies (1997)].

4.3. Bivariate Marginal Distribution Algorithm (BMDA)

Bivariate Marginal Distribution Algorithm (BMDA) purposed by [Pelikan &
Mühlenbein (1999)] is an extension to UMDA. BMDA is a more generalised than
above two algorithms in this class as it can cover both linear problem as well as
problems with pair wise interaction among genes. In contrast to chain and tree
structure used in above two algorithms, BMDA uses Forest (set of mutually
independent tree) structure to represent probability mode [Figure 4.1 c].
Dependencies among variables are detected during optimization process. BMDA
uses Pearson’s chi-square statistics to measure dependencies which is defined by:

∑ −
=

ected
ectedobserved

X
exp

)exp(2
2

In term of univariate and bivariate marginal frequency, for the variable position

ji ≠ we get:

∑
−

=
ji xx ji

jiji
ji xpxNp

xpxNpxxNp
X

,

2
2
,))()(

))()(),((

The variables i and j are said to be 95% independent if 84.32
, <jiX .

Pseudo-code for BMDA is shown below:

1. Generate initial population of size M >> 0 randomly
2. Select N promising solution where N<=M
3. Calculate univariate marginal probabilit y)(ixp and bivariate marginal

probability),(ji xxp of selected individuals
4. Construct probability model by measuring dependencies among each pair

of individual using Pearson’s chi-square statistics.
5. Replace K individuals in parent with K new individual generated according

to constructed probability model.
6. Go to step 2 until termination criteria are satisfies.

The detail work on BMDA can be found in [Pelikan & Mühlenbein (1999)].

5. Multivariate Model

Any algorithms considering interdependency between variable of order more than
two can be placed in this class. The probability network representing
interdependency of variables obviously becomes more complex and the
computation time to construct such network hugely increases making it almost

impossible to search through all possible models. Due to its simplicity most of the
algorithms in this class uses Greedy heuristic to search a good model, however
greedy heuristics does not always guarantees accuracy. Some other complex search
algorithms have also been successfully used for this purpose and lots of current
research in PMBGAs is focused on finding good heuristic. Extended Compact
Genetic Algorithm (ECGA) [Harik (1999)], Factorised Distribution Algorithm
(FDA) [Mühlenbein & Mahnig (1999a)], [Mühlenbein & Mahnig (2002)],
Bayesian Optimization algorithm (BOA) [Pelikan, Goldberg & Cantú-Paz (1999)],
Learning Factorised Distribution Algorithm (LFDA) [Mühlenbein & Mahnig
(1999b)], Estimation of Bayesian Network (EBNA) [Etxeberria & Larrañaga
(1999)] uses multivariate model of probability distribution. Figure 5.1 below shows
the graphical representation of different probabilistic network used by these
algorithms.

5.1. Extended Compact Genetic Algorithm (ECGA)

Extended Compact Genetic Algorithm (ECGA) [Harik (1999)] as claimed by
author is a different approach which uses probabilistic model building GA concept
to solve the linkage learning problem [Thierens & Goldberg (1993)]. Linkage
Learning in GA is to find the building blocks (in this context is a group of variables
related with each other where the relationship is not previously known) which
should be preserved after crossover and then make GA work with found building
Blocks (group of alleles). ECGA is an extension of cGA. The probability model
used in ECGA and so called Marginal Product Model (MPM) [Figure 5.1 a] is
distinct from other previously described model in the sense that MPM includes
both univariate marginal distribution as well as multivariate marginal distribution
in its probability model (But does not include conditional probability) i.e. It
assumes no directional dependency among variables and takes in account marginal
probability of set of variables at once. ECGA uses greedy search to find the good
MPM model and runs cGA on that model.

Figure 5.1: Graphical representation of probability model considering
multivariate dependency among variables.

a. Marginal product
model (ECGA)

c. (BOA, EBNA) b. Triangular model
(FDA)

Probability model used in ECGA

∑
∈

=
Cc

cxpxP)()(

 Where, marginal probability of a group of dependent variable c as a whole
is represented as)(cxp and C is a set of grouped alleles. If the constructed model
is correct and the problem domain does not contain overlapping dependencies then
ECGA works well, however not all real life problem are of this kind and can often
contain overlapping dependencies in which case ECGA might fail.

The detail work on ECGA can be found in [Harik (1999)].

5.2. Factorised Distribution Algorithm (FDA)

Factorised Distribution Algorithm purposed by [Mühlenbein & Mahnig (1999a)] is
an extension of UMDA. UMDA was first extended to Boltzmann Estimated
Distribution Algorithm (BEDA) which computes Boltzmann Distribution by using
Boltzmann selection. Authors claims Boltzmann Distribution as a good candidate
for optimization using a search distribution [Mühlenbein & Mahnig (2002)]. It is
proven that BEDA converges to the set of all global optima. However, BEDA is
not a practical algorithm as calculation of distribution requires a sum over
exponentially may parameters of distributions. Given an Additive decomposition of
function (ADF) factorization theorem [Mühlenbein & Mahnig (1999a)] can be
used to effectively compute factorization of Boltzmann distribution [Figure 5.1 b].
In the context of schemata theorem [Goldberg, D.E. (1989)], factorization theorem
tells which previously given schemata are necessary to generate the whole
distribution. By using factorization theorem BEDA can be extended into a practical
algorithm FDA. If the condition of factorization theorem is fulfilled the
convergence proof of BEDA will apply to FDA.

Pseudo-code for FDA taken from [Mühlenbein & Mahnig (2002)] is shown below:

1. Using Given Additive decomposition of function calculate ib (residuals)

and ic (separators): the sets of variables correlated to each other.
2. Generate M individuals according to uniform distribution

∏
=

=
n

i
ixpxP

1

)()(

3. select N<=M individuals using Boltzmann selection where probability of

an individual X being selected is computed as

∏

∏
∏

=

=

=

== k

i
c

k

i
cbk

i
cb

i

ii

ii

xp

xxp
xxpxP

2

1

1)(

),(
)|()(

β

β

ββ

 where, k is a number of correlated set of variables; βp is a

Boltzmann distribution calculated as
Z

e
ap

T
af)(

)(
−

=β where,

∑
−

=
b

T
bf

eZ
)(

 is a partition function, f(a) is fitness of individual a and T

is a temperature value which make s Boltzmann selection suitable for
optimization problems.

4. Estimate the conditional probabilities)|(

ii cb xxp from selected
individuals

5. Generate M new individuals according to conditional distribution

∏
=

=
n

i
cb ii

xxpxP
1

)|()(

6. Go to step 3 until termination criteria satisfies.

The pseudo code shown above is one and the most recent out of several different
variant of FDA that can be found in different papers produced during the evolution
phase of algorithm. However the key concept that the Boltzman selection is an
essential part of FDA remains same. FDA however can be run with any selection
method but the convergence proof of BEDA will no longer be valid.

FDA requires problem structure in advance in the form of decomposition of
function which might not be available in the real world problem. However if the
given decomposition is accurate FDA can solve GA hard problems very efficiently
and effectively. An extension of FDA not requiring problem structure in advance
and so called Learning Factorised Distribution Algorithm (LFDA) has later been
purposed by [Mühlenbein & Mahnig (1999b)] and will be discussed later in this
paper.

Detailed definition and mathematical analysis of FDA can be found in [Mühlenbein
& Mahnig (1999a)], [Mühlenbein & Mahnig (1999b)], [Mühlenbein & Mahnig
(2002)].

5.3. Bayesian Optimization algorithm (BOA)

Bayesian Optimization algorithm (BOA) purposed by [Pelikan, Goldberg & Cantú-
Paz (1999)] encodes joint probability distribution in the form of Bayesian Network
[Figure 5.1 c]. Bayesian Network is learnt from the selected set of promising
solution. In recent year use of Bayesian Network as estimation of Distribution has
been popular among researchers and several different PMBGAs using Bayesian
network has been purposed. Learning Factorization Distribution Algorithm
(LFDA) [Mühlenbein & Mahnig (1999b)] and Estimation of Bayesian Network
(EBNA) [Etxeberria & Larrañaga (1999)] also uses Bayesian network. The score to
measure the quality of network is an important factor in Bayesian Network. BOA
uses Bayesian-Dirichlet (BD) metric as a measure of quality of network. However
they mention possibility of use of other metrics such as Minimal Description
Length (MDL) metric in their algorithm. BOA uses Greedy algorithm to search
through the possible space of networks.

The General BOA follows:

1. Generate initial population of size M >> 0 randomly
2. Select N promising solution where N<=M
3. Construct a Bayesian Network B using chosen metric and constraints k
4. Generate K new individual according to the joint distribution encoded by

constructed Bayesian Network B.
5. Create new population by replacing K individuals in parent with generated

K new individuals.
6. Go to step 2 until termination criteria are satisfies.

Constraint k in BOA represents the maximum number of incoming edges into each
node. The order of dependency considered by the Network and the time taken to
construct the Network directly depends on value k.

BOA has been later extended to Hierarchical BOA (HBOA) [Pelikan & Goldberg
(2000)]. Underlying concept in HBOA is to decompose problem into some kind of
Hierarchical form and to execute BOA on them. HBOA has been later reported to
solve two class of complex optimization problem so called Ising Spin Glasses and
MAXSAT [Pelikan & Goldberg (2003)].

For detail information on BOA and HBOA see [Pelikan, Goldberg & Cantú-Paz
(1999)], [Pelikan & Goldberg (2000)] and [Pelikan & Goldberg (2003)].

5.4. Learning Factorised Distribution Algorithm (LFDA)

Learning Factorised Distribution Algorithm (LFDA) purposed by [Mühlenbein &
Mahnig (1999b)] is an extension to FDA. Unlike FDA, LFDA does not need
problem structure in advance, rather uses Bayesian network to compute the
probabilistic model in each step. The approach is almost similar to the one used in

BOA however difference is being that BOA uses Bayesian Dirichlet (BD) score
were as LFDA uses a modification of Minimal Description Length (MDL) score
known as Bayesian Information Criterion (BIC) score to measure quality of
Bayesian network. More about LFDA can be found in [Mühlenbein & Mahnig
(1999b)].

5.5. Estimation of Bayesian Network (EBNA)

Estimation of Bayesian Network (EBNA) purposed by [Etxeberria & Larrañaga
(1999)] also uses Bayesian network as encoding of its joint probability distribution.
EBNA follows similar approach to LEFDA and BOA. Three different variant of
EBNA: EBNAPC, EBNABIC, EBNAK2+pen using different Network quality
measuring method has been purposed [Larrañaga, Etxeberria, Lozano & Peña
(2000a)]. EBNAPC uses Chi square test to check the conditional interdependencies
in network. Similar to LFDA, EBNABIC uses Bayesian Information Criterion (BIC)
score to measure quality of Bayesian network. EBNAK2+pen combine EBNABIC
approach with a penalizing term introduced to avoid a more complex Bayesian
Network. Experimental results presented by authors showed that out of these three
algorithms EBNAK2+pen returned best result were as EBNAPC returned worst result.
The detail work on EBNA can be found in [Etxeberria & Larrañaga (1999)],
[Larrañaga, Etxeberria, Lozano & Peña (2000a)].

6. Learning a Probabilistic Network

From the survey done so far we can conclude that the success and failure of
PMBGAs solely depends on used probability model (also known as dependency
network). The Computation of dependency network can be seen as a combination
of two procedures. First is to choose a correct scoring metric to measure the
goodness of network and second is to choose a good search heuristic to find
network such that the found network optimizes the scoring metric. Unfortunately,
to find the best network, it is required to search through space of all possible
networks which in fact is a NP–hard problem in itself. To overcome this problem
researchers tend to use simple local search heuristics such as greedy algorithm due
to its efficiency, however in many cases, greedy algorithm does not guarantees
good solution. The use of other global search algorithm is also restricted because of
their computational cost.

In recent years some research has been done on parallel computation of
dependency network such that to efficiently compute a good Network in reasonable
amount of time. However significant time efficiency is yet to be reported. For more
information see [Lozano, J. A., Sagarna, R., Larranaga, P. (2001)], [Ocenasek, J.,
Schwarz, J. (2000)], [Ocenasek, J., Schwarz, J., Pelikan, M. (2003)].

Another approach that also has prospective to tackle this problem is purposed by
[Tomoyuki, H. et. El.(2003)]. They purpose a variant of PMBGA so called
distributed probabilistic model building GAs (DPMBGA) which uses Principle
Component Analysis (PCA) to transform set of selected individual to different
space where no correlation among variables exists. After generating new
individuals using simple univariate distribution in that space, it transformed them
back to original space. However it is reported that PCA is not always effective and
is problem dependent. For detail information on DPMBGA see [Tomoyuki, H. et.
El.(2003)].

Lots of interdisciplinary researches is being carried out at the moment aiming on
finding a good way of calculating probability distribution. As stated by
[Mühlenbein & Mahnig (2002)], It combines statistics (graphical models),
Artificial intelligence (computer vision, Evolutionary algorithms, and belief
propagation), statistical physics (advanced mean field method) and probabilistic
logic (maximum entropy).

7. Conclusion

In this paper, we surveyed a class of optimization algorithm algorithms so called
PMBGAs that uses probabilistic model of promising solution to further explore the
search space so as to preserve important pattern in chromosome. We first describe
motivation of emergence of PMBGA and its general frame work. We categorise
different PMBGAs according to their used probability model and describe their
workflow. We figure out the effectiveness and weekness of PMBGAs and conclude
that bottle neck of this new technique remains same that is to find out the effective
way of building a problem specific Probabilistic model.

Presented paper can be seen as an introductory text on basic PMBGAs survey. For
more advanced topics and more detail information on surveyed algorithms it is
recommended to see the referenced papers.

References

Baluja, S. (1994). Population­based incremental learning: A method for
integrating genetic search based function optimization and competitive learning.
Pittsburgh, PA: Carnegie Mellon University (Technical Report No.
CMU­CS­94­163).

Baluja, S., & Davies, S. (1997). Using optimal dependency­trees for combinatorial
optimization: Learning the structure of the search space. In Proceedings of the
14th International Conference on Machine Learning (pp. 30--38). Morgan
Kaufmann.

Brown D.F., Garmendia -Doval, A.B., McCall, J. A. W. (2001). Markov Random
Field Modelling of Royal Road Genetic Algorithms. in Evolution Artificielle 2001,
Le Creusot, France, October 2001.

De Bonet, J. S., Isbell, C. L., & Viola, P. (1997). MIMC: Finding optima by
estimating probability densities. In Mozer, M. C., Jordan, M. I., & Petsche, T.
(editors), Advances in Neural Information Processing Systems, Volume 9 (pp.
424). The MIT Press, Cambridge.

Etxeberria, R. and Larrañaga, P. (1999). Global optimization with Bayesian
networks. In II Symposium on Artificial Intelligence. CIMAF99. Special Session
on Distributions and Evolutionary Optimization (pp. 332­339).

Goldberg, D. E. (1989). Genetic Algorithms in search, optimization and machine
learning. Addison-Wesley.0-201-15767-5

Harik, G. R., Lobo, F. G., & Goldberg, D. E. (1998). The compact genetic
algorithm. In Proceedings of the IEEE Conference on Evolutionary Computation
1998 (ICEG'98) (pp. 523­528). Piscataway, NJ: IEEE Service Centre.

Harik, G. (1999). Linkage learning via probabilistic modeling in the ECGA.
Urbana, IL: University of Illinois Genetic Algorithms Laboratory (IlliGAL Report
No. 99010).

Jues, A., Baluja, S., Sinclair, A.(1993). The Equilibrium Genetic Algorithm and the
Role of Crossover.

Larranaga, P., Etxeberria, R., Lozano, J. A. and Pena, J. M., (1999). Optimization
by learning and simulation of Bayesian and Gaussian networks. Technical Report,
University of the Basque Country, KZAA-IK- 99-04.

Larrañaga, P., Etxeberria, R., Lozano, J. A., & Peña, J. M. (2000a). Combinatorial
optimization by learning and simulation of Bayesian networks. In Proceedings of
the Sixteenth Conference on Uncertainty in Artificial Intelligence (pp. 343­352).
Stanford.

Larrañaga, P., Etxeberria, R., Lozano, J. A., & Peña, J. M. (2000b). Optimization in
continuous domains by learning and simulation of Gaussian networks. In Wu, A.
S. (editor), Proceedings of the 2000 Genetic and Evolutionary Computation
Conference
Workshop Program (pp. 201­204).

Lozano, J. A., Sagarna, R., Larranaga, P. (2001): Parallel Estimation of
Distribution Algorithms. Estimation of Distribution Algorithms. A new Tool for
Evolutionary Computation. P. Larranaga, J. A. Lozano (eds.). Kluwer Academic
Publishers, (pp. 129-145), 2001.

Mühlenbein, H., & Paaß, G. (1996). From recombination of genes to the estimation
of
distributions I. Binary parameters. Parallel Problem Solving from Nature, eds.
Voigt, H.-M and Ebeling, W. and Rechenberg, I. and Schwefel, H.-P., LNCS 1141,
Springer:Berlin, (pp. 178-187).

Mühlenbein, H. (1997). The equation for response to selection and its use for
prediction. Evolutionary Computation, 5 (3), (pp. 303-346).

Mühlenbein, H., Mahnig, T., & Rodriguez, A. O., (1999). Schemata, distributions,
and graphical models in evolutionary optimization. Journal of Heuristics, Volume
5 (pp.215-247).

Mühlenbein, H., & Mahnig, T. (1999a). Convergence theory and applications of
the factorized distribution algorithm. Journal of Computing and Information
Technology,
Volume 7 (pp. 19-32).

Mühlenbein, H., & Mahnig, T. (1999b). FDA - A scalable evolutionary algorithm
for the optimization of additively decomposed functions. Evolutionary Computation
7(4), (pp.353-376).

Mühlenbein, H., & Mahnig, T. (2002). Evolutionary Algorithms and the
Boltzmann Distribution. Foundations of Genetic Algorithms (FOGA2002).

Ocenasek, J., Schwarz, J. (2000). The Parallel Bayesian Optimization Algorithm,
In Proceedings of the European Symposium on Computational Inteligence,
Physica-Verlag, Kosice, Slovak Republic, (pp. 61-67).

Ocenasek, J., Schwarz, J., Pelikan, M. (2003). Design of Multithreaded Estimation
of Destribution Algorithms. In Proceedings of the Genetic and Evolutionary
Computation Conference GECCO-2003 (pp. 1247-1258)

Pelikan, M., & Mühlenbein, H. (1999). The bivariate marginal distribution
algorithm. In Roy, R., Furuhashi, T., & Chawdhry, P. K. (Eds.), Advances in Soft

Computing ­ Engineering Design and Manufacturing (pp. 521--535). London:
Springer­Verlag.

Pelikan, M., Goldberg, D. E., & Cantú-Paz, E. (1999). BOA: The Bayesian
optimization algorithm. In Banzhaf, W., Daida,, J., Eiben, A. E., Garzon, M. H.,
Honavar, V., Jakiela, M., & Smith, R. E. (editors). In Proceedings of the Genetic
and Evolutionary Computation Conference GECCO-99, Volume I (pp. 525-532).
Orlando, FL: Morgan Kaufmann Publishers, San Francisco, CA.

Pelikan, M., Goldberg, D. E., & Lobo, F. G. (1999). A survey of optimization by
building and using probabilistic models. Urbana, IL: University of Illinois Genetic
AlgorithmsLaboratory (IlliGAL Report No. 99018).

Pelikan, M., & Goldberg, D. E. (2000). Hierarchical Problem Solving by the
Bayesian Optimization Algorithm. In Proceedings of the Genetic and Evolutionary
Computation Conference GECCO-2000 (pp. 267-274), Las Vegas, Nevada.

Pelikan, M., & Goldberg, D. E. (2003). Hierarchical BOA solves Ising Spin Glass
and MAXSAT. In Proceedings of the Genetic and Evolutionary Computation
Conference GECCO-2003 (pp. 1271-1282)

Thierens, D. and Goldberg, D.E. (1993). Mixing in genetic algorithms. Proceedings
of the Fifth International Conference on Genetic Algorithms (pp. 38­45), 1993.

Tomoyuki, H. et. El.(2003): Distributed Probabilistic Model-Building Genetic
Algorithm: In Proceedings of the Genetic and Evolutionary Computation
Conference GECCO-2003.

