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Abstract 
 

Probabilistic model building Genetic Algorithm (PMBGA) is a 
novel concept in the field of evolutionary computation which is 
motivated by an idea of building a probabilistic model of the 
population to preserve important building blocks in subsequent 
generation. Growing number of research is being carried out in this 
field and different variant of PMBGA s has been purposed. Aim of this 
paper is to survey currently existing PMBGAs, categorise them 
according to their used probability model, describe their workflow and 
analyse their strengths and weakness.  

 
 
1. Introduction 
 
Genetic Algorithms (GAs) are a class of optimization algorithm motivated from the 
theory of natural selection and genetic recombination. It tries to find better solution 
by selection and recombination of promising solution. It works well in wide 
verities of problem domains. However, sometimes simple selection and crossover 
operators are not effective enough to get optimum solution as they might not 
effectively preserve important patterns (known as building blocks or partial 
solutions) in chromosome. It often happens in the problem domains were the 
building blocks are loosely distributed. The search for techniques to preserve 
Building Blocks lead to the emergence of new class of algorithm called 
Probabilistic Model Building Genetic Algorithm (PMBGA)[Pelikan, Goldberg & 
Lobo(1999)] also known as Estimation of Distribution Algorithm (EDA) 
[Mühlenbein & Paaß (1996)]. The principle concept in this new technique is to 
prevent disruption of partial solutions contained in a chromosome by giving them 
high probability of being presented in the child chromosome. It can be achieved by 
building a probabilistic model to represent correlation between variables in 
chromosome and using build model to generate next population. PMBGA is a 
developing area in the field of evolutionary and Genetic algorithms. First purposed 
by [Baluja (1994)] with the simplest form on this class and so called Population 



Based Incremental Learning (PBIL)(early work on PBIL has been published with 
the name Equilibrium Genetic Algorithm (EGA) together with [Jues, Baluja & 
Sinclair (1993)]), a dozen or more different variants of PMBGA has been proposed 
till the date and are subject of active research for evolutionary and Genetic 
Algorithm community. Most of the early PMBGAs were focused on binary 
representation of solution vector i.e focused on desecrate problem domain. They 
has been later modified to work on continues domain and published with different 
names. For simplicity of this paper, we will cons ider PMBGAs on desecrate 
domain however continuous variant of most of the algorithms discussed in this 
paper has already been purposed.  
 
This paper is a survey of existing PMBGAs. The paper is organised as follows. 
Section 2 will describe general frame work of PMBGA and categorize existing 
PMBGAs in three different classes according to their used probability model: 
Univariate, Bivariate and Multivariate model. Section 3 will describe algorithms 
using Univariate Model of probability distribution followed by Section 4 and 5 
describing algorithms using Bivariate and Multivariate model respectively. Section 
6 will briefly discuss the bottle neck problem for PMBGAs so called problem of 
learning probabilistic model. We conclude paper by summarising the achievements 
made so far in PMBGAs and giving overview of further work.  
 
 
2. General PMBGA model 
 
As in traditional GA, all PMBGAs start with generating initial population of size 
M. Then N individuals out of M are selected according to chosen selection criteria. 
Estimation of distribution is carried out (The joint probability distribution of 
individual is calculated) from selected set of individuals and used to sample 
offspring to replace parent population.  
 
 
 
The general PMBGA is as follows: 
 

1. Generate initial population of size M 
2. Select N promising solution where N<=M 
3. Calculate joint probability distribution of  selected individuals  
4. Generate offspring according to the calculated probability distribution 

and replace parent. 
5. Go to step 2 until termination criteria are meet 

 
Neither crossover nor mutation is involved in the process of generating offspring 
and completely replaced by calculation and sampling of probability distribution 
(However in some PMBGAs operators similar to mutation is allowed [Baluja 
(1994)]). In contrast with implicit processing of building blocks in GA, the process 
here is explicit and fully depends on used probability model. The goodness of 
probability model is the decisive factor in PMBGA performance. As accurate the 



probability model, as effective the algorithm will be in preventing disruption of 
important building blocks.  
 
Before going any further, let us first introduce the notations used in this paper. We 
follow the approach taken by [Larranaga, Etxeberria, Lozano and Pena (1999)]. 
 
Let iX be a random variable and ix be one of its possible value , then 

)( ii xX =ρ (or simply )( ixρ ) represents the generalised probability density 

function (gpdf) over the point ix . Now let { }nXXXX ,...,, 21=  be the vector 

(individual) with n variables and { }nxxxx ,...,, 21=  be the value taken by each 
variable of vector X then )( xX =ρ (or simply )(xρ ) represents the joint 
generalised probability density function (jgpdf) of X . Similarly the generalised 
conditional probability density function of variable iX taking value ix  given value 

jx  for the variable jX  will be represented as )|( jjii xXxX ==ρ (or 

simply )|( ji xxρ ). 
 
If the problem domain is discrete, i.e. If variable jX  is discrete, 

)()( iiii xXpxX ===ρ (or simply )( ixp ) is the univariate marginal 

distribution of the variable iX . If all the variables in X  are discrete then 
)()( xXpxX ===ρ (or simply )(xp ) will be complete joint probability 

distribution. Similarly conditional probability that iX will take value ix  given 

value jx  for the variable jX  can be denoted as 

)|()|( jjiijjii xXxXpxXxX =====ρ (or simply )|( ji xxp ). 
 
In case of continuous jX  i.e. in continuous domain, )()( iiii xXfxX ===ρ (or 

simply )( ixf ) is the density function of the variable iX . If all the variables in X  
are continuous then )()( xXfxX ===ρ (or simply )(xf ) will be joint density . 

Similarly )|()|( jjiijjii xXxXpxXxX =====ρ (or simply )|( ji xxp ) 

will be conditional density of iX  taking value ix  given value jx  for the 

variable jX .  
 
As we will be focusing on discrete domain in this paper, let us describe marginal 
and conditional probability in discrete domain in more detail. 
 
We can define univariate marginal distribution of ith variable )( ii xXp = (or 

simply )( ixp ) as a sum of probability of all vectors in population having ii xX =  
which can be written as: 
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Let SX  be the sub vector of X and Sx  be the possible set of values taken by SX  

then marginal probability )( SS xXp = (or simply )( Sxp )  is defined as sum of 

probability of all vectors in population having same set of values Sx  for sub 

vector SX  and can be written as 
 

∑ =
=
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,

)()(  

 
Note that univariate marginal distribution is a simple case of marginal distribution 
where sub vector consist of single variable.  
 
Let AX and BX  be disjoint sub vectors of X and Ax  and Bx  be the possible subset 
of values taken by them respectively then conditional probability 

)|( BBAA xXxXp ==  (or simply )|( BA xxp ) can be calculated as  
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According to the probability theory the complete joint probability distribution of a 
set of individuals )( xXPr = or simply )(xPr  where each variable 

{ }nXXXX ,...,, 21=  takes values { }nxxxx ,...,, 21= can be calculated as  

  )()|().....,...,|(),...,|()( 13221 nnnnnr xpxxpxxxpxxxpxP −=  
 
This paper will differentiate PMBGAs according to their used probability model. 
We follow the approach taken by previous reviewers and categorise PMBGA into 
three different classes by their used probability model: Univariate, Bivariate and 
Multivariate Models. [Larranaga, Etxeberria, Lozano & Pena (1999)][Pelikan, 
Goldberg & Lobo (1999)]  
 
 
3. Univariate Model 
 
Algorithms in this category do not consider any dependencies among variable in 
individual i.e. considers building blocks of order one. So the joint probability 
distribution becomes simply the product of univariate marginal probability of all 
variables in individual.  
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Where,  
n  : Total number of variable in an individual (chromosome length). 

)( ixp  : Univariate marginal probability of ith variable 
 
Due to its simplicity the algorithm in this category are computationally very 
efficient and performs excellent in linear problem such as function optimization 
where the variables are not significantly interdependent. However these algorithms 
fail on complex problems where variables interact with each other. Population 
based Incremental Learning (PBIL) [Baluja (1994)], Univariate Marginal 
Distribution Algorithm (UMDA) [Mühlenbein & Paaß (1996)] and Compact 
Genetic Algorithm (cGA) [Harik, Lobo & Goldberg (1998)] uses univariate model 
of probability distribution. Figure 3.1 below is the graphical representation of the 
probability model used by these algorithms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.1. Population Based Incremental Learning (PBIL) 
 
One of the earliest works in the PMBGA field was Population Based Incremental 
Learning (PBIL) algorithm purposed by [Baluja (1994)]. PBIL was motivated by 
the idea of combining GAs with Competitive Learning which is often used in 
training Artificial Neural Networks. PBIL considers binary representation of 
individual. It starts with initialization of a probability vector and maintains and 
updates it throughout the whole computation process. General PBIL algorithm 
follows: 
 

1. Initialize probability vector { }),......,, 21 npppp =  with 0.5 at each 
position. Each variable represents probability of value ‘1’ being presented 
in same position of child chromosomes. 

2. Sample M >> 0 individuals according to probabilities in p and evaluate 
them. 

3. Update probability vector according to fittest individual 
{ }nsssS ,......,, 21=  using following rule:    

Figure 3.1: Graphical representation of probability model assuming no 
dependency among variables. 



  ( ) LRsLRpp iii ∗+−∗= 0.1     
  where LR is Learning Rate Value. 

4. If mutation condition passed, Mutate Probability vector using following 
rule:        
   
 ( ) MSorrandomMSpp ii ∗+−∗= )10(0.1   
 where MS is amount of mutation to affect the probability vector. 

5. Go to step 2 until termination criteria satisfied. 
 

Several different variant of PBIL has been purposed with some simple extension in 
method of updating probability vector. One of them is to move probability vector 
towards best N individuals, where N << M rather than to move towards single best 
individual. Another possibility is to move not only towards best vector but also to 
move away from worst individual. Detail work and experiments on PBIL can be 
found in [Baluja (1994)] 
 
 
3.2. Univariate Marginal Distribution Algorithm (UMDA) 
 
Univariate Marginal Distribution Algorithm (UMDA) (extended to more complex 
model BMDA, FDA ) was first purposed by [Mühlenbein & Paaß (1996)] and is 
one of the early work in the field of PMBGAs. UMDA captures general concept of 
PMBGA with Univariate model. Different variants of UMDAs has been purposed 
and their detail mathematical analysis has been carried out by Mühlenbein and his 
colleagues [Mühlenbein & Paaß (1996)],[ Mühlenbein (1997)]. 
 
 
General UMDA is as follows: 
 

1. Generate initial population of size M >> 0 randomly 
2. Select N promising solution where N<=M 
3. Calculate univariate marginal probability )( ixp from selected 

individuals  
4. Replace parent with M new individuals generated according to the 

distribution ∏
=

=
n

i
ixpxP

1

)()(   

5. Go to step 2 until termination criteria satisfies 
 
 
Unlike PBIL which uses univariate marginal probability to update probability 
vector, above algorithm relay only on univariate marginal probability )( ixp  to 
generate new solution. However by introducing memory (probability vector as in 
PBIL) it is possible to incrementally change sampling distribution. Following 
algorithm so called Simple Univariate Marginal Distribution Algorithm (SUMDA) 



(also known Incrimental Univariate Marginal Distribution algorithm IUMDA) 
[Mühlenbein (1997)] uses memorised previous sampling distribution (probability 
vector) as well as current univariate marginal probability to calculate current 
sampling distribution.  
 
1. Initialize probability vector { }npppp ,......,, 21=   

2. Generate M individuals according to distribution ∏
=

=
n

i
ipxP

1

)(   

3. Select N promising solution and calculate univariate marginal probability 
of selected solution )( ixp . 

4. Update probability vector according to the following rule  
))(( iiii pxppp −+= λ  

Where, λ  is a controlling parameter for convergence. The smaller λ  is, 
the slower convergence speed. Authors provide evidence that performance 
is better when 1=λ  

5. Go to step 2 until termination criteria satisfies. 
 

 
Apart from the updating rule, the procedure of SUMDA is similar to PBIL. The 
detail work on UMDA and its extensions can be found in [Mühlenbein & Paaß 
(1996)], [Mühlenbein (1997)] and [Mühlenbein, Mahnig, & Rodriguez (1999)]. 
 
 
3.3. Compact Genetic Algorithm (cGA) 
 
Compact Genetic Algorithm (cGA) [Harik, Lobo & Goldberg (1998)] (later 
extended to Extended Compact Genetic algorithm (ECGA)) is motivated by the 
previous works done in the field of  random walk model and also assumes no 
overlapping building blocks are contained in chromosome i.e conceders only 
building blocks of  order 1. 
 
cGA also maintains probability vector as in PBIL. However, unlike PBIL, cGA 
samples only two individual at a time, compete them and uses allele value of 
winning individual which is distinct from allele value of loosing individual to 
update the probability vector leaving probably vector unchanged in the position 
where winning and loosing allele contains same value. The process continues until 
probability vector converges.  
 
General cGA is shown bellow: 
 

1. Initialize probability vector { }npppp ,......,, 21=  with 0.5 at each 
position.  

 



2. Sample 2 individuals according to probabilities in p and label according to 
their fitness: winner to the fittest and loser to less fit 

 
3. Update probability vector using following rule:   
   For i = 1 to n do 
   If winner[i] ≠  loser[i] then 
    If winner[i]=1 then updateratepp ii +=   

      Else updateratepp ii −=  
   

Where updaterate is small value usually defined as 1/population 
size. 

 
4. Go to step 2 until probability vector converges. 

 
The detail work on cGA can be found in [Harik, Lobo & Goldberg (1998)]. 
 
 
4. Bivariate Model 
 
Algorithms in this category consider pair wise dependencies among variables in 
chromosome i.e. consider the building blocks of order two. Similarly the 
probability model becomes more complex than one of univariate model and takes a 
form of probabilistic network between variables. This class of algorithm performs 
better in problems with pair wise interaction among variable. However fails in the 
problems with multiple variable interactions. Mutual Information Maximization for 
input clustering (MIMIC) [De Bonet, Isbell and Viola (1997)], Combining 
Optimizers with Mutual Information Trees (COMIT) [Baluja & Davies (1997)], 
Bivariate Marginal Distribution Algorithm (BMDA) [Pelikan & Mühlenbein 
(1999)] uses Bivariate Model of probability Distribution. Graphical representation 
of Probabilistic networks used by these algorithms is shown in figure 4.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1: Graphical representation of probability model assuming 
dependency of order two among variables. 

a. Chain model 
(MMIC) 

b. Tree model  
(COMIT) 

c. Forest model 
(BMDA) 



4.1. Mutual Information Maximization for input clustering (MIMIC) 
 
Mutual Information Maximization for input clustering (MIMIC) purposed by [De 
Bonet, Isbell and Viola (1997)] uses chain structure of probability distribution 
[Figure 4.1 a] which can be written as: 
 

)()|(.).........|()|()(
12121 nnn iiiiiii xpxxpxxpxxpxP

−
=π  

 
where, niii ........21=π  is a permutation of the numbers between 1….n. The 

distribution )(xPπ uses π  as an ordering for the pair wise condit ional 
probabilities. The goal is to find the ordering π  such that 
distribution )(xPπ matches as closely as possible to the complete joint probability 

distribution )(xPr . 
 

)()|()........|()...|()( 13221 nnnnnr xpxxpxxxpxxxpxP −= .  
 
Kullback-Liber divergence ))(|)(( xPxPD r π  is used to measures the identically 

between )(xPπ  and )(xPr . Searching over all possible permutation of π  is 
computationally hard so MIMIC uses simple greedy algorithm to find π  with 
optimal divergence, which however does not always gives accurate model. The 
detail work on MIMIC can be found in [De Bonet, Isbell and Viola (1997)]. 
 
 
 
4.2. Combining Optimizers with Mutual Information Trees (COMIT): 
 
Combining Optimizers with Mutual Information Trees (COMIT) purposed by 
[Baluja & Davies (1997)] also uses bivariate model of distribution however in 
contrast with chain distribution used in MIMIC, COMIT uses tree distribution 
[Figure 4.1 b]. Tree structure has advantage over chain structure in the sense that 
every chain can be seen as a tree however vice versa is not always true. COMIT 
used Maximum Weight Spanning Tree (MWST) algorithm to construct a tree 
structure and further uses it as its probability model which can be written as 
 

∏
=

=
n

i
ji xxpxP

1

)|()(  

Where, j represents the parent position for i. However in the case when parent of i 
th variable does not exist i.e if i is the root variable then )|( ji xxp  is generalised 

to )( ixp . Experimental results presented by authors shows better performance of 
COMIT over MIMIC, PBIL and GA. The detail work on COMIT can be found in 
[Baluja & Davies (1997)]. 
 



4.3. Bivariate Marginal Distribution Algorithm (BMDA) 
 
Bivariate Marginal Distribution Algorithm (BMDA) purposed by [Pelikan & 
Mühlenbein (1999)] is an extension to UMDA. BMDA is a more generalised than 
above two algorithms in this class as it can cover both linear problem as well as 
problems with pair wise interaction among genes. In contrast to chain and tree 
structure used in above two algorithms, BMDA uses Forest (set of mutually 
independent tree) structure to represent probability mode [Figure 4.1 c]. 
Dependencies among variables are detected during optimization process. BMDA 
uses Pearson’s chi-square statistics to measure dependencies which is defined by: 
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In term of univariate and bivariate marginal frequency, for the variable position 

ji ≠  we get: 
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The variables i and j are said to be 95% independent if 84.32
, <jiX .  

 
Pseudo-code for BMDA is shown below: 
 

1. Generate initial population of size M >> 0 randomly 
2. Select N promising solution where N<=M 
3. Calculate univariate marginal probabilit y )( ixp and bivariate marginal 

probability ),( ji xxp of  selected individuals  
4. Construct probability model by measuring dependencies among each pair 

of individual using Pearson’s chi-square statistics. 
5. Replace K individuals in parent with K new individual generated according 

to constructed probability model.  
6. Go to step 2 until termination criteria are satisfies. 

  
The detail work on BMDA can be found in [Pelikan & Mühlenbein (1999)]. 
 
 
5. Multivariate Model 
 
Any algorithms considering interdependency between variable of order more than 
two can be placed in this class. The probability network representing 
interdependency of variables obviously becomes more complex and the 
computation time to construct such network hugely increases making it almost 



impossible to search through all possible models. Due to its simplicity most of the 
algorithms in this class uses Greedy heuristic to search a good model, however 
greedy heuristics does not always guarantees accuracy. Some other complex search 
algorithms have also been successfully used for this purpose and lots of current 
research in PMBGAs is focused on finding good heuristic. Extended Compact 
Genetic Algorithm (ECGA) [Harik (1999)], Factorised Distribution Algorithm 
(FDA) [Mühlenbein & Mahnig (1999a)], [Mühlenbein & Mahnig (2002)], 
Bayesian Optimization algorithm (BOA) [Pelikan, Goldberg & Cantú-Paz (1999)], 
Learning Factorised Distribution Algorithm (LFDA) [Mühlenbein & Mahnig 
(1999b)], Estimation of Bayesian Network (EBNA) [Etxeberria & Larrañaga 
(1999)] uses multivariate model of probability distribution. Figure 5.1 below shows 
the graphical representation of different probabilistic network used by these 
algorithms.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.1. Extended Compact Genetic Algorithm (ECGA) 
 
Extended Compact Genetic Algorithm (ECGA) [Harik (1999)] as claimed by 
author is a different approach which uses probabilistic model building GA concept 
to solve the linkage learning problem [Thierens & Goldberg (1993)]. Linkage 
Learning in GA is to find the building blocks (in this context is a group of variables 
related with each other where the relationship is not previously known) which 
should be preserved after crossover and then  make GA work with found building 
Blocks (group of alleles). ECGA is an extension of cGA. The probability model 
used in ECGA and so called Marginal Product Model (MPM) [Figure 5.1 a] is 
distinct from other previously described model in the sense that MPM includes 
both univariate marginal distribution as well as multivariate marginal distribution 
in its probability model (But does not include conditional probability) i.e.  It 
assumes no directional dependency among variables and takes in account marginal 
probability of set of variables at once. ECGA uses greedy search to find the good 
MPM model and runs cGA on that model.  
 

Figure 5.1: Graphical representation of probability model considering 
multivariate dependency among variables. 

a. Marginal product 
model (ECGA) 

c. (BOA, EBNA) b. Triangular model 
(FDA) 



Probability model used in ECGA 
 

∑
∈

=
Cc

cxpxP )()(  

 
 Where, marginal probability of a group of dependent variable c as a whole 
is represented as )( cxp  and C is a set of grouped alleles. If the constructed model 
is correct and the problem domain does not contain overlapping dependencies then 
ECGA works well, however not all real life problem are of this kind and can often 
contain overlapping dependencies in which case ECGA might fail. 
 
The detail work on ECGA can be found in [Harik (1999)]. 
 
 
5.2. Factorised Distribution Algorithm (FDA) 
 
Factorised Distribution Algorithm purposed by [Mühlenbein & Mahnig (1999a)] is 
an extension of UMDA. UMDA was first extended to Boltzmann Estimated 
Distribution Algorithm (BEDA) which computes Boltzmann Distribution by using 
Boltzmann selection. Authors claims Boltzmann Distribution as a good candidate 
for optimization using a search distribution [Mühlenbein & Mahnig (2002)]. It is 
proven that BEDA converges to the set of all global optima. However, BEDA is 
not a practical algorithm as calculation of distribution requires a sum over 
exponentially may parameters of distributions. Given an Additive decomposition of 
function (ADF) factorization theorem [Mühlenbein & Mahnig (1999a)] can be 
used to effectively compute factorization of Boltzmann distribution [Figure 5.1 b]. 
In the context of schemata theorem [Goldberg, D.E. (1989)], factorization theorem 
tells which previously given schemata are necessary to generate the whole 
distribution. By using factorization theorem BEDA can be extended into a practical 
algorithm FDA. If the condition of factorization theorem is fulfilled the 
convergence proof of BEDA will apply to FDA.  
 
 
Pseudo-code for FDA taken from [Mühlenbein & Mahnig (2002)] is shown below: 
 

1. Using Given Additive decomposition of function calculate ib (residuals) 

and ic (separators): the sets of variables correlated to each other. 
2. Generate M individuals according to uniform distribution 
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=
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3. select N<=M individuals using Boltzmann selection where probability of 

an individual X being selected is computed as 
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  where, k  is a number of correlated set of variables; βp is a 

Boltzmann distribution calculated as
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 is a partition function, f(a) is fitness of individual a and T 

is a temperature value which make s Boltzmann selection suitable for 
optimization problems. 

 
4. Estimate the conditional probabilities )|(

ii cb xxp  from selected 
individuals 

 
5. Generate M new individuals according to conditional distribution 
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6. Go to step 3 until termination criteria satisfies. 

 
The pseudo code shown above is one and the most recent out of several different 
variant of FDA that can be found in different papers produced during the evolution 
phase of algorithm. However the key concept that the Boltzman selection is an 
essential part of FDA remains same. FDA however can be run with any selection 
method but the convergence proof of BEDA will no longer be valid.  
 
FDA requires problem structure in advance in the form of decomposition of 
function which might not be available in the real world problem. However if the 
given decomposition is accurate FDA can solve GA hard problems very efficiently 
and effectively. An extension of FDA not requiring problem structure in advance 
and so called Learning Factorised Distribution Algorithm (LFDA) has later been 
purposed by [Mühlenbein & Mahnig (1999b)] and will be discussed later in this 
paper. 
 
Detailed definition and mathematical analysis of FDA can be found in [Mühlenbein 
& Mahnig (1999a)], [Mühlenbein & Mahnig (1999b)], [Mühlenbein & Mahnig 
(2002)].  
 
 
 
 



5.3. Bayesian Optimization algorithm (BOA) 
 
Bayesian Optimization algorithm (BOA) purposed by [Pelikan, Goldberg & Cantú-
Paz (1999)] encodes joint probability distribution in the form of Bayesian Network 
[Figure 5.1 c]. Bayesian Network is learnt from the selected set of promising 
solution. In recent year use of Bayesian Network as estimation of Distribution has 
been popular among researchers and several different PMBGAs using Bayesian 
network has been purposed. Learning Factorization Distribution Algorithm 
(LFDA) [Mühlenbein & Mahnig (1999b)] and Estimation of Bayesian Network 
(EBNA) [Etxeberria & Larrañaga (1999)] also uses Bayesian network. The score to 
measure the quality of network is an important factor in Bayesian Network. BOA 
uses Bayesian-Dirichlet (BD) metric as a measure of quality of network. However 
they mention possibility of use of other metrics such as Minimal Description 
Length (MDL) metric in their algorithm. BOA uses Greedy algorithm to search 
through the possible space of networks. 
 
The General BOA follows: 
 

1. Generate initial population of size M >> 0 randomly 
2. Select N promising solution where N<=M 
3. Construct a Bayesian Network B using chosen metric and constraints k  
4. Generate K new individual according to the joint distribution encoded by 

constructed Bayesian Network B.  
5. Create new population by replacing K individuals in parent with generated 

K new individuals. 
6. Go to step 2 until termination criteria are satisfies. 

 
Constraint k  in BOA represents the maximum number of incoming edges into each 
node. The order of dependency considered by the Network and the time taken to 
construct the Network directly depends on value k.  
 
BOA has been later extended to Hierarchical BOA (HBOA) [Pelikan & Goldberg 
(2000)]. Underlying concept in HBOA is to decompose problem into some kind of 
Hierarchical form and to execute BOA on them. HBOA has been later reported to 
solve two class of complex optimization problem so called Ising Spin Glasses and 
MAXSAT [Pelikan & Goldberg (2003)].  
 
For detail information on BOA and HBOA see [Pelikan, Goldberg & Cantú-Paz 
(1999)], [Pelikan & Goldberg (2000)] and [Pelikan & Goldberg (2003)]. 
 
 
5.4. Learning Factorised Distribution Algorithm (LFDA) 
 
Learning Factorised Distribution Algorithm (LFDA) purposed by [Mühlenbein & 
Mahnig (1999b)] is an extension to FDA. Unlike FDA, LFDA does not need 
problem structure in advance, rather uses Bayesian network to compute the 
probabilistic model in each step. The approach is almost similar to the one used in 



BOA however difference is being that BOA uses Bayesian Dirichlet (BD) score 
were as LFDA uses a modification of Minimal Description Length (MDL) score 
known as Bayesian Information Criterion (BIC) score to measure quality of 
Bayesian network. More about LFDA can be found in [Mühlenbein & Mahnig 
(1999b)]. 
 
 
5.5. Estimation of Bayesian Network (EBNA) 
 
Estimation of Bayesian Network (EBNA) purposed by [Etxeberria & Larrañaga 
(1999)] also uses Bayesian network as encoding of its joint probability distribution. 
EBNA follows similar approach to LEFDA and BOA. Three different variant of 
EBNA: EBNAPC, EBNABIC, EBNAK2+pen using different Network quality 
measuring method has been purposed [Larrañaga, Etxeberria, Lozano & Peña 
(2000a)]. EBNAPC uses Chi square test to check the conditional interdependencies 
in network. Similar to LFDA, EBNABIC uses Bayesian Information Criterion (BIC) 
score to measure quality of Bayesian network. EBNAK2+pen combine EBNABIC 
approach with a penalizing term introduced to avoid a more complex Bayesian 
Network. Experimental results presented by authors showed that out of these three 
algorithms EBNAK2+pen returned best result were as EBNAPC returned worst result. 
The detail work on EBNA can be found in [Etxeberria & Larrañaga (1999)], 
[Larrañaga, Etxeberria, Lozano & Peña (2000a)]. 
 
 
 
6. Learning a Probabilistic Network 
 
From the survey done so far we can conclude that the success and failure of 
PMBGAs solely depends on used probability model (also known as dependency 
network). The Computation of dependency network can be seen as a combination 
of two procedures. First is to choose a correct scoring metric to measure the 
goodness of network and second is to choose a good search heuristic to find 
network such that the found network optimizes the scoring metric. Unfortunately, 
to find the best network, it is required to search through space of all possible 
networks which in fact is a NP–hard problem in itself. To overcome this problem 
researchers tend to use simple local search heuristics such as greedy algorithm due 
to its efficiency, however in many cases, greedy algorithm does not guarantees 
good solution. The use of other global search algorithm is also restricted because of 
their computational cost.  
 
In recent years some research has been done on parallel computation of 
dependency network such that to efficiently compute a good Network in reasonable 
amount of time. However significant time efficiency is yet to be reported. For more 
information see [Lozano, J. A., Sagarna, R., Larranaga, P. (2001)], [Ocenasek, J., 
Schwarz, J. (2000)], [Ocenasek, J., Schwarz, J., Pelikan, M. (2003)].   
 



Another approach that also has prospective to tackle this problem is purposed by 
[Tomoyuki, H. et. El.(2003)]. They purpose a variant of PMBGA so called 
distributed probabilistic model building GAs (DPMBGA) which uses Principle 
Component Analysis (PCA) to transform set of selected individual to different 
space where no correlation among variables exists. After generating new 
individuals using simple univariate distribution in that space, it transformed them 
back to original space. However it is reported that PCA is not always effective and 
is problem dependent. For detail information on DPMBGA see [Tomoyuki, H. et. 
El.(2003)]. 
 
Lots of interdisciplinary researches is being carried out at the moment aiming on 
finding a good way of calculating probability distribution.  As stated by 
[Mühlenbein & Mahnig (2002)], It combines statistics (graphical models), 
Artificial intelligence (computer vision, Evolutionary algorithms, and belief 
propagation), statistical physics (advanced mean field method) and probabilistic 
logic (maximum entropy).  
 
 
7. Conclusion 
 
In this paper, we surveyed a class of optimization algorithm algorithms so called 
PMBGAs that uses probabilistic model of promising solution to further explore the 
search space so as to preserve important pattern in chromosome. We first describe 
motivation of emergence of PMBGA and its general frame work. We categorise 
different PMBGAs according to their used probability model and describe their 
workflow. We figure out the effectiveness and weekness of PMBGAs and conclude 
that bottle neck of this new technique remains same that is to find out the effective 
way of building a problem specific Probabilistic model. 
 
Presented paper can be seen as an introductory text on basic PMBGAs survey. For 
more advanced topics and more detail information on surveyed algorithms it is 
recommended to see the referenced papers. 
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